Автор
Плис Валерий Иванович 578 статей

§3. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

Рассмотрим систему материальных точек массами `m_1`, `m_2 ...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2 ...`. Импульсом `vecP_sf"с"` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих систему: `vecP_sf"с" = vec p_1 + vec p_2 + ...`.

Найдём скорость `(Delta vec P_sf"с")/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vec F_1` внешние по отношению к системе тела и внутренняя сила `vec f_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vec F_2`  и внутренняя сила `vec f_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

`(Delta vec P_("с"))/(Delta t) = (Delta vec p_1)/(Delta t) + (Delta vec p_2)/(Delta t) = (vec F_1 + vec f_(12)) + (vec F_2 + vec f_(21))`.

По третьему закону Ньютона `vec f_(12) + vec f_(21) = vec (0)`,  и мы приходим к теореме об  изменении импульса системы материальных точек:

`(Delta vec P_("с"))/(Delta t) = vec F_1 + vec F_2`,

т. е. скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

Из приведённого доказательства следует, что третий закон Нью­тона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких  других внешних сил.

В этом - его более глубокое физическое содержание.

Пример 5

Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 6), с которыми клин  действует на опору.


Решение

По третьему закону Ньютона искомые силы связаны с силой трения `vec(R_1) = - vecF_("тр")`  и силой нормальной реакции `vec R_2 = - vecN_("г")`, действующими на клин со стороны опоры (рис. 7).

Силы `vec F_("тр")` и `vecN_("г")`, наряду с силами тяжести, являются внешними по отношению  к системе «клин + брусок» и определяют скорость  изменения импульса этой системы.      

          

Импульс `vecP_("с")`  системы  направлен  по  скорости  бруска и  по величине  равен произведению массы бруска на его скорость `vecP_("с") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 8):

`(Delta vec p)/(Delta t) = m vec g + vec N + vecf_("тр")`.

Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N` получаем:

   `(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg (sin alpha - mu cos alpha)`.   

По теореме об изменении импульса системы «клин + брусок»

`(Delta vec(P_sf"с"))/(Delta t) = M vec g + m vec g + vec N_("г") + vecF_("тр")`.

Переходя в последнем равенстве к проекциям   на  горизонтальное  и  вертикальное направления (рис. 7), с учётом  

Pc,x~=pxcosαP_{\mathrm c,\widetilde x}=p_x\cos\alpha

получаем  

Pc,y~=-pxsinαP_{\mathrm c,\widetilde y}=-p_x\sin\alpha

Pc,x~t=px cosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{\mathrm c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\;\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

Pc,y~t=-px sinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\;\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

Отсюда находим искомые силы

`R_1 = F_sf"тр" = mg (sin alpha - mu cos alpha) cos alpha`,

`R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha)sin alpha`.

К этим же результатам можно прийти, анализируя движение на «традиционном языке» сил и ускорений с использованием формулы (2).