Разложите на множители:
а) `x^4+4`;
б)* `x^3-3x^2-3x-1`;
в) `x^4-x^3+2x^2-2x+4`;
г)* `x^4-4x^3-20x^2+13x-2`.
а) `x^4+4=x^4+4x^2+4-4x^2=(x^2+2)^2-(2x)^2=`
`=(x^2+2-2x)(x^2+2+2x)`.
Таким образом, сумму четвёртых степеней, в отличие от суммы квадратов, можно разложить на множители:
`a^4+b^4=(a^2+b^2)^2-2a^2b^2=`
`=(a^2-sqrt2ab+b^2)(a^2+sqrt2ab+b^2)`.
б)* `x^3-3x^2-3x-1=2x^3-(x^3+3x^2+3x+1)`$$ ={\left(\sqrt[3]{2}x\right)}^{3}-{\left(x+1\right)}^{3}=$$
$$ =\left(\sqrt[3]{2}x-x-1\right)\left(\sqrt[3]{4}{x}^{2}+\sqrt[3]{2}x\left(x+1\right)+{\left(x+1\right)}^{2}\right)$$.
в) Вынесем `x^2` за скобки и сгруппируем:
`x^4-x^3+2x^2-2x+4=x^2(x^2-x+2-2/x+4/x^2)=``x^2((x^2+4/x^2)-(x+2/x)+2)`.
Обозначим `x+2/x=t`. Тогда `x^2+4+4/x^2=t^2`, `x^2+4/x^2=t^2-4`, выражение в скобках принимает вид:
`t^2-4-t+2=t^2-t-2=(t+1)(t-2)=(x+2/x+1)(x+2/x-2)`.
В итоге получаем:
`x^2(x+2/x+1)(x+2/x-2)=(x^2+2+x)(x^2+2-2x)=(x^2+x+2)(x^2-2x+2)`.
Этот приём иногда используется для решения уравнений четвёртой степени; в частности, с его помощью решают возвратные уравнения (см. пример 12 е).
г)* Можно убедиться, что никакой из рассмотренных выше методов не помогает решить задачу, а именно: рациональных корней уравнение не имеет (числа `+-1` и `+-2` – не корни); вынесение числа `x^2` за скобки и группировка слагаемых приводит к выражению
`x^2(x^2-2/x^2_(4x-13/x)-20)`.
Если здесь обозначить `4x-13/x=t`, то `x^2-2/x^2` через `t` рационально не выражается.
Прибегнем к методу неопределённых коэффициентов. Пусть
`x^4-4x^3-20x^2+13x-2=(x^2+ax+b)(x^2+cx+d)`. (17)
Попробуем подобрать коэффициенты `a`, `b`, `c`, `d` так, чтобы (17) обратилось в верное равенство. Для этого раскроем скобки в правой части и приведём подобные слагаемые:
`x^4-4x^3-20x^2+13x-2=`
`=x^4+(a+c)x^3+(b+ac+d)x^2+(ad+bc)x+bd`. (18)
Приравняем в (18) коэффициенты при одинаковых степенях в обеих частях уравнения. Получим систему уравнений:
$$ \left\{\begin{array}{l}a+c=-4,\\ b+ac+d=-20,\\ ad+bc=13,\\ bd=-2.\end{array}\right.$$ (19)
Мы будем пытаться найти целочисленные решения системы (19). Найти все решения системы (19) не проще, чем решить исходную задачу, однако нахождение целочисленных решений – разумеется, если они есть – нам по силам.
Рассмотрим четвёртое уравнение. Возможны только два принципиально различных случая:
1) `b=1` и `d=-2`;
2) `b=2` и `d=-1`. Рассмотрим каждый из них. Подставляем значения `b` и `d` в первые три уравнения:
1) $$ \left\{\begin{array}{l}a+c=-4,\\ ac=-19,\\ -2a+c=13.\end{array}\right.$$
Из первого и третьего уравнений системы получаем `c=5/3`; `a=-17/3`, что не удовлетворяет второму уравнению, поэтому система решений не имеет; пара чисел `b=1` и `d=-2` не подходит.
2) $$ \left\{\begin{array}{l}a+c=-4,\\ ac=-21,\\ -a+2c=13.\end{array}\right.$$
Эта система имеет одно решение `a=-7`, `c=3`. Значит, числа `a=-7`, `b=2`, `c=3`, `d=-1` являются решением системы (19), поэтому
`x^4-4x^3-20+13x-2=(x^2-7x+2)(x^2+3x-1)`.
Далее каждый из квадратных трёхчленов можно разложить на множители.
Во многих ситуациях степень уравнения можно понизить с помощью замены переменных.