§2. Система уравнений и неравенств.совокупность уравнений и неравенств.

Пусть задано неравенствоf(x)>g(x)f(x) > g(x) . По определению, неравенство выполнено, если разность функций f(x)-g(x)>0f(x)-g(x) > 0. Поэтому, за редким  исключением, неравенства будем решать “сравнением с нулём” и записывать их в виде f(x)>0(<0)f(x) > 0(< 0).


Часто приходится иметь дело не с одним неравенством или уравнением, а с  несколькими. При этом важно различать две задачи:
1) решить систему уравнений или систему неравенств,
2) решить совокупность уравнений или совокупность неравенств.


определение

Пусть дано mm неравенств (или уравнений) f1(x1,x2,...xk)0(=0)f_1(x_1,x_2,...x_k)\geq0(=0),f2(x1,x2...,xk)>0(=0)...fm(x1,x2,...,xk)>0(=0)f_2(x_1,x_2...,x_k)>0(=0)...f_m(x_1,x_2,...,x_k)>0(=0) на некотором множестве XX. Если стоит задача – найти все  упорядоченные наборы чисел a=(a1,a2,...,ak)Xa=(a_1,a_2,...,a_k)\in X , каждый из которых является решением каждого из заданных неравенств (уравнений), то говорят, что задана система неравенств (уравнений). Такое aa называется решением системы.


Решить систему – это значит найти множество всех решений. Обычно систему неравенств (уравнений) записывают в столбик и объединяют фигурной скобкой

{f1(x1,x2,...,xk)>0(=0),f2(x1,x2,...,xk)>0(=0),...,fm(x1,x2,...,xk)>0(=0).\{\begin{array}{c}\begin{array}{c}\begin{array}{c}\begin{array}{c}f_1(x_1,x_2,...,x_k)>0(=0),\\f_2(x_1,x_2,...,x_k)>0(=0),\\...,\\f_m(x_1,x_2,...,x_k)>0(=0).\end{array}\end{array}\end{array}\end{array}


определение

ОДЗ системы называется множество, являющееся пересечением областей допустимых значений всех этих неравенств.


Если для неравенств (уравнений)


f1(x1,x2,...,xk)>0(=0)f_1(x_1,x_2,...,x_k)>0(=0),f2(x1,...,xk)>0(=0)f_2(x_1,...,x_k)>0(=0),...,fm(x1,...,xk)>0(=0)f_m(x_1,...,x_k)>0(=0)
стоит задача – найти все такие упорядоченные наборы чисел a=(a1,a2,...,ak)Xa=(a_1,a_2,...,a_k)\in X , каждый из которых является решением хотя бы одного из заданных неравенств (уравнений), то говорят, что на XX задана совокупность неравенств (уравнений). Такое aa называется решением совокупности неравенств (уравнений). Решить совокупность неравенств (уравнений) – это значит найти всё множество её решений. В современной литературе совокупность записывают в столбик и объединяют квадратной скобкой


[f1(x1,x2,...,xk)>0(=0),f2(x1,x2,...,xk)>0(=0),...,fm(x1,x2,...,xk)>0(=0).\lbrack\begin{array}{c}f_1(x_1,x_2,...,x_k)>0(=0),\\f_2(x_1,x_2,...,x_k)>0(=0),\\...,\\f_m(x_{1,}x_2,...,x_k)>0(=0).\end{array}


определение

ОДЗ совокупности называется объединение областей допустимых значений всех заданных неравенств (уравнений).



Во всех случаях количество заданных неравенств (число mm ) никак не связано с количеством неизвестных (число kk).