ЗФТШ
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Атом состоит из положительно заряженного ядра и находящихся в его поле отрицательно заряженных электронов. Число электронов в атоме химического элемента равно положительному заряду ядра атома и порядковому номеру элемента в ПСХЭ.
Электроны в атомах могут располагаться на разных энергетических уровнях. Число энергетических уровней равно номеру периода, в котором находится элемент. Число электронов на внешнем (валентном) уровне атомов малых периодов равно номеру группы, в которой находится элемент.
Движущиеся электроны можно представить в виде электронного облака. Ближе к ядру оно относительно плотное. Область, в которой нахождение электрона наиболее вероятно, называют орбиталью.
Орбитали отличаются своей формой и размерами. Их обозначают латинскими буквами `s`, `p`, `d`, `f`. Каждая орбиталь характеризуется определённой энергией, и на ней не может быть более двух электронов. Орбитали `s`-типа имеет форму шара. Орбитали `p`-типа имеют форму объёмной восьмёрки (гантель); все три `p`-орбитали взаимно перпендикулярны и энергетически эквивалентны.
Атом углерода - основа органических соединений. Углерод - элемент `"IV"` группы ПСХЭ Д. И. Менделеева. У атома углерода имеется два `s`-электрона на первом энергетическом уровне и четыре электрона на втором (внешнем) энергетическом уровне. На валентном энергетическом уровне имеются два спаренных и два неспаренных электрона. Химическая связь между атомами осуществляется путём спаривания неспаренных электронов и образования общих электронных пар называется ковалентной связью.
Атом углерода в органических соединениях находится в возбуждённом состоянии и его валентность равна четырём. Каждый неспаренный электрон атома углерода спаривается с неспаренным электроном атома водорода. Таким образом, атом углерода образует четыре ковалентные связи.
Теория гибридизации атомных орбиталей была разработана американским учёным Л. Полингом.
| |
Предполагается, что при образовании химических связей орбитали всех валентных электронов атома углерода выравниваются и становятся одинаковыми. При этом все они принимают форму несимметричных, вытянутых в направлении к вершинам тетраэдра, объёмных восьмёрок, которые не имеют ничего общего как с `s`-, так и с `p`-орбиталями. Таким образом,
гибридизация представляет собой процесс выравнивания атомных орбиталей по форме и энергии.
Для атома углерода возможны три типа гибридизация (валентных состояния).
`sp^3`- Гибридизация - процесс смешения одной `s`- и трёх `p`-орбиталей. Все четыре гибридные орбитали ориентированы строго в пространстве под углом `109^@28^'` по осям тетраэдра. Состояние углеродного атома с `sp_3`-гибридными орбиталями характерно для предельных углеводородов - алканов.
Если химическая связь между атомами осуществляется одной парой электронов, то её называют простой (одинарной) или `sigma` (сигма) - связью. Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры атомов, называется `sigma` (сигма) - связью. На рисунке представлены различные типы перекрывания атомных орбиталей (`s-s`, `s-p`, `p-p`-перекрывание) при образовании `sigma`-связи:
Чем больше область перекрывания (более тёмная часть на рисунке), тем большая электронная плотность сосредоточена в пространстве между ядрами и тем сильнее они «стягиваются». Поэтому `sigma`-связь отличается большей прочностью.
`sp^2`-Гибридизация - смешение одной `s`- и двух `p`-орбиталей. Образующиеся три гибридные орбитали расположены в одной плоскости под углом `120^@` друг к другу. Такое состояние характерно для непредельных углеводородов ряда этилена - алкенов.
Таким образом, каждый атом углерода имеет по три гибридных электронных облака и по одному негибридному `p`-облаку. Гибридные электронные облака взаимно перекрываются и образуют между атомами углерода `sigma`-связь.
Двойная связь состоит из одной `sigma` и одной `pi` связей. `pi`-Связь образована перекрыванием двух негибридных `p`-орбиталей (по одной от каждого атома углерода), оси которых параллельны друг другу и расположены перпендикулярно плоскости `sigma`-связей.
Особый интерес представляют диеновые углеводороды, в которых содержатся две двойные связи, разделённые одной одинарной связью. Такие алкадиены называются сопряжёнными. Все четыре атомы углерода, стоящие рядом в сопряжённой системе, находятся в состоянии `sp^2`-гибридизации:
$$ \underset{s{p}^{2}}{\stackrel{1}{\mathrm{C}}{\mathrm{H}}_{2}}=\underset{s{p}^{2}}{\stackrel{2}{\mathrm{C}}\mathrm{H}}-\underset{s{p}^{2}}{\stackrel{3}{\mathrm{C}}\mathrm{H}}=\underset{s{p}^{2}}{\stackrel{4}{\mathrm{C}}\mathrm{H}}-\underset{s{p}^{3}}{{\mathrm{CH}}_{3}}$$
Все атомы углерода и водорода находятся в одной плоскости, а `p`-орбитали атомов углерода располагаются перпендикулярно этой плоскости. Боковое перекрывание `p`-орбиталей при образовании `pi`-связей происходит не только в положениях `1,2` и `3,4`, но и частично в положении `2,3`. Таким образом, `pi`-связи в сопряжённых диенах являются делокализованными и образуют единую `pi`-систему. Делокализацию `pi`-связей в сопряжённых диенах изображают структурной формулой:
$$ {\mathrm{CH}}_{2}=\mathrm{CH}=\mathrm{CH}={\mathrm{CH}}_{2}$$
Связь `"C"_2-"C"_3` носит кратный характер. Это подтверждается экспериментальным определением длин связей. Показано, что в бутадиене-`1,3` длина связи `"C"_2-"C"_3` `(0,146 "нм")` несколько короче `sigma`-связей в алканах `(0,154 "нм")`, но длиннее двойной связи `(0,133 "нм")` в алкенах. А длина двойных связей в положениях `1` и `3` в бутадиене-`1,3` благодаря делокализации оказались несколько больше `(0,137 "нм")`, чем в алкенах. Особенности образования `sigma`- и `pi`-связей и являются причиной своеобразия химических свойств сопряжённых диеновых углеводородов.
| |
Другим соединением, в котором атом углерода находится в `sp^2`-гибридном состоянии, является бензол и его гомологи (ароматические соединения). Экспериментально установлено, что молекула бензола является плоской и все атомы углерода равнозначны, так же как и атомы водорода. Этот результат соответствует структурной формуле, предложенной Ф.А.Кекуле.
Было показано, что молекула бензола является правильным шестиугольником с одинаковыми расстояниями между ядрами атомов углерода `(0,140 "нм")`, что противоречит формуле Ф.А. Кекуле. Равенство межъядерных расстояний говорит о том, что в бензоле нет одинарных и двойных связей, т. к. в этом случае одни расстояния между центрами атомов углерода были бы примерно равны `0,154 "нм"`, а другие – `0,134 "нм"`.
Все атомы углерода в молекуле бензола находятся в состоянии `sp^2`-гибридизации. При этом гибридные электронные орбитали каждого атомы углерода образуют в плоскости кольца две `sigma`-связи с соседними атомами углерода и одну `sigma`-связь с атомом водорода, следовательно, углы между этими тремя связями равны `120^@`.
Каждая орбиталь взаимодействует путём бокового перекрывания с орбиталями обоих соседних с ним атомов углерода. Поэтому в молекуле образуется не три отдельные `pi`-связи, а единая `pi`-электронная система из шести `p`-электронов, общая для всех атомов углерода. Такое равномерное распределение электронной плотности приводит к усреднению длин связей между атомами углерода.
`sp`-Гибридизация – смешение одной `s`- и одной `p`-орбитали. Две гибридные орбитали расположены на одной оси (прямой) под углом `180^@` друг к другу. Остальные две негибридные орбитали расположены во взаимно перпендикулярных плоскостях. Состояние атома углерода с `sp`-гибридными орбиталями характерно для непредельных углеводородов с тройной связью – алкинов.
В случае, если происходит перекрывание четырёх негибридных атомных орбиталей (по две от каждого атома углерода), то возникает тройная связь. Тройная связь состоит из одной `sigma`- и двух `pi`-связей. `pi`-Связь менее прочная, чем `sigma`-связь, а её электроны легче смещаются в сторону одного из углеродных атомов.
определяется степенью смещения электронной плотности между атомами в молекуле. Поэтому ковалентная связь может быть неполярной (связь между атомами одного и того же химического элемента, например, `"H"-"H"`, `"C"-"C"`) и полярной (между атомами разных химических элементов (`"C"-"Cl"`, `"C"="O"` и др.) Образование полярных молекул связано с различной электроотрицательностью атомов, входящих в состав молекулы. Например, полярными являются молекулы хлороводорода и хлорметана. Большая электроотрицательность атома хлора приводит к смещению общей электронной пары к атому хлора, возникновению на нем частично отрицательного заряда (дельта минус), а на атомах углерода и водорода появляется недостаток электронной плотности и возникает частично положительный заряд (дельта плюс).
$$ \stackrel{\delta +}{\mathrm{H}}\rightarrow\stackrel{\delta -}{\mathrm{Cl}}$$ $$ \mathrm{C}{\stackrel{\delta +}{\mathrm{H}}}_{3}\rightarrow\stackrel{\delta -}{\mathrm{Cl}}$$
способность атома притягивать валентные электроны, участвующие в образовании связи: чем выше электроотрицательность, тем сильнее притяжение между ядром и валентными электронами. Атом углерода обладает различной электроотрицательностью. Это зависит от того, в каком валентном состоянии он находится. Поэтому электроотрицательность атома углерода изменяется в следующем ряду `"C"(sp)>"C"(sp^2)>"C"(sp^3)`. Ниже представлена таблица значений относительной электроотцательности атомов по Полингу.
способность изменять свою полярность под влиянием внешнего воздействия. При этом происходит смещение внешнего воздействия. Если полярность связи можно рассматривать как статическое явление, вызванное постоянным фактором различной электоорицательности связанных атомов, то поляризуемость – явление динамическое. При этом `pi`-связи поляризуются гораздо легче, чем `sigma`-связи.
определяется расстоянием между ядрами атомов и выражается в нанометрах `(1 "нм"=10^(-9) "м")`. Длина ковалентной связи зависит от её характера: чем больше кратность связи, тем она короче.
определяется энергией связи. Чем выше энергия связи, тем прочнее связь и тем труднее её разрушить.
Это означает, что образование ковалентной связи происходит не в любых направлениях пространства, а только в определённых. Углы, которые образуют между собой ковалентные связи, зависят от валентного состояния атома углерода.
связь, осуществляемая за счёт образования общих электронных пар, принадлежащих обоим атомам.
Существуют два механизма образования ковалентной связи: обменный и донорно-акцепторный.
При обменном механизме каждый из атомов отдаёт в общее пользование по одному неспаренному электрону. Таким образом построено большинство органических соединений (см. электронные формулы метана, этана, этена, ацетилена).
Ковалентная связь может быть образована также парой электронов, предоставляемой одним атомом, называемым донором электронов, и вакантной орбиталью другого атома, называемого акцептором электронов. Такой механизм образования ковалентной связи носит название донорно-акцепторным. Поясним механизм донорно-акцепторного взаимодействия на примере образовании хлорида метиламмония с помощью электронных формул (точками обозначены валентные электроны, а пустым квадратиком свободная `s`-орбиталь водорода):

В ионе метиламмония все связи, образованные по двум различным механизмам, равноценны.
Существуют и межмолекулярные взаимодействия, например, водородная связь. Она возникает при взаимодействии атома водорода, соединённого с электроноакцепторными атомами `("N"`, `"O"`, `"F")` и не поделённой электронной парой другого атома или другой молекулы. Графически водородная связь изображается пунктиром.
Водородную связь образуют только такие атомы водорода, которые соединены с более электроотрицательным атомом, чем сам водород. При этом на атоме водорода создаётся частичный положительный заряд `delta^+`, а на более электроотрицательном атоме частично отрицательный заряд `delta^-`.
Например, для уксусной кислоты возникновение водородной связи может привести к объединению молекул в пары с образованием циклической димерной структуры, и молекулярная масса уксусной кислоты, измеренная по плотности пара, оказывается удвоенной:

Межмолекулярные водородные связи влияют на многие физические свойства спиртов, кислот, производных аммиака. Они являются причиной образования вторичной структуры биологических полимеров - белков, нуклеиновых кислот.

Водородные связи чрезвычайно широко распространены в природе. Они обуславливают строение многих биологически важных молекул (белки, нуклеиновые кислоты). Относительная прочность водородных связей имеет свой биологический смысл: они являются достаточно прочными, чтобы выдерживать удары окружающих молекул, но способны разрываться при незначительных изменениях энергии сталкивающихся молекул.
Все органические соединения в зависимости от природы углеродного скелета можно разделить на ациклические и циклические.
называют также алифатическими. Они могут быть насыщенными (алканы и их производные) и ненасыщенными (алкены, алкадиены, алкины и их производные). Ациклические скелеты бывают неразветвленными (например, в н-гексане) и разветвленными (например, в `2,4`-диметилгексане):
![]() |
||
| н-гексан | 2,4-диметилгексан |
Среди циклических соединений обычно выделяют карбоциклические, молекулы которых содержат кольца из углеродных атомов, и гетероциклические, кольца которых содержат кроме углерода атомы других элементов (кислорода, серы, азота и др.).
Карбоциклические соединения подразделяются на алициклические (предельные и непредельные) и ароматические.
Примеры алициклических соединений:
![]() |
![]() |
![]() |
||
| циклобутан | циклогексан | циклогексен |
ароматических соединений:
![]() |
|
|
||
| бензол | анилин | нафталин |
гетероциклических соединений:
![]() |
![]() |
![]() |
||
| фуран | пиридин | этиленоксид |
Рассмотренную классификацию органических соединений можно представить в виде краткой схемы:

В самих углеродных скелетах полезно классифицировать отдельные атомы углерода по числу химически связанных с ними атомов углерода. Если данный атом углерода связан с одним атомом углерода, то его называют первичным, с двумя - вторичным, тремя -третичным и четырьмя - четвертичным. Ниже показаны различные атомы углерода в разветвленном насыщенном углеводороде (алкане).
Обозначения: первичный (п), вторичный (в), третичный (т), четвертичный (ч) атомы углерода.

В состав многих органических соединений кроме углерода и водорода входят и другие элементы, причём в виде функциональных групп – групп атомов, определяющих химические свойства данного класса соединений. Некоторые наиболее характерные функциональные группы и соответствующие им классы соединений приведены в таблице:
|
Функциональная группа |
Название группы |
Классы соединений |
Примеры |
|
`-"F"`, `-"Cl"`, `-"Br"`, `-"I"` |
Галогены |
Галоген- производные |
`"CH"_3"Cl"` - хлорметан |
|
`-"OH"` |
Гидроксил |
Спирты |
`"C"_2"H"_5"OH"` - этиловый спирт |
|
Фенолы |
фенол |
||
|
|
Карбонил |
Альдегиды |
|
|
Кетоны |
ацетон |
||
|
|
Карбоксил |
Карбоновые кислоты |
уксусная кислота |
![]() |
Аминогруппа |
Амины |
`"C"_2"H"_5"NH"_2`- этиламин |
|
`"CH"_3"NHCH"_3`- диметиламин |
|||
|
`-"NO"_2` |
Нитрогруппа |
Нитро- соединения |
`"CH"_3"NO"_2`- нитрометан |
Остановимся более подробно на некоторых из перечисленных классов органических соединений.
можно представить как продукты замещения атомов водорода в молекуле углеводорода гидроксильными группами `–"OH"`. Количество гидроксильных групп в молекуле определяет принадлежность спиртов к одноатомным, двухатомным, трехатомным и многоатомным.
Общая формула гомологического ряда предельных одноатомных спиртов - `"C"_n"H"_(2n+1)"OH"`.
называются продукты замещения в углеводородах атома водорода на
группу, а кетоны содержат карбонильную группу
, связанную с двумя углеводородными радикалами `"R"`.
Общая формула альдегидов и кетонов `"C"_n"H"_(2n)"O"`.
вещества с общей формулой
Здесь `"R"` - атом `"H"` или углеводородный радикал: `"CH"_3`, `"C"_2"H"_5`, `"C"_3"H"_7` и т. п. Функциональная группа карбоновых кислот - карбоксильная группа:
Карбоновые кислоты с одной группой `"COOH"` в молекуле - одноосновные, с двумя группами `"COOH"` - двухосновные и т. д. В зависимости от природы радикала `"R"` различают предельные, непредельные и ароматические карбоновые кислоты.
Огромное разнообразие органических соединений выдвигает на первый план проблемы систематизации и классификации. Каждое органическое соединение должно быть названо, причём следует помнить, что ему можно было поставить в соответствие только одну структуру.
Номенклатура органических соединений правила, по которым образованы названия органических соединений.
В первоначальный период развития органической химии соединениям давали тривиальные названия. Тривиальная номенклатура - система исторически сложившихся названий, широко применяемых до настоящего времени. В основном эти названия даны в самый ранний период развития органической химии. Например, муравьиная кислота, уксусная кислота, ацетон, молочная кислота и т. д.
Важнейший принцип номенклатуры - однозначность, а именно: каждой структуре должно соответствовать единственное название, и наоборот, данному названию должна отвечать единственная структура.
Все органические соединения рассматриваются как производные углеводородов, в молекулах которых часть водородных атомов заменена на функциональные группы или углеводородные радикалы.
В настоящее время признана систематическая номенклатура ИЮПАК (IUPAC - Международный союз теоретической и прикладной химии). Для того, чтобы назвать органическое соединение по номенклатуре ИЮПАК, следует соблюдать
1. В молекуле выбирают наиболее длинную углеродную цепь (главную). Главная цепь содержит максимальное число функциональных групп. Название углеводорода, соответствующего главной цепи, и будет корнем составляемого названия.
2. Атомы углерода в главной цепи нумеруются таким образом, чтобы атом, к которому присоединён заместитель (углеводородный радикал или функциональная группа), получил меньший номер.
3. Перед корнем указывается положение заместителя цифрой и название заместителя. Если в молекуле несколько одинаковых заместителей, то используют приставки умножения: `2` - ди-, `3` - три-, `4` - тетра-, `5` - пента- и т. д. Если же в молекуле имеются разные заместители, их названия перечисляются в алфавитном порядке.
4. Органическое вещество причисляется к тому или иному классу в зависимости от того, какая функциональная группа присутствует в его молекуле. Если в соединении присутствует только одна функциональная группа, то она всегда обозначается суффиксом. Такая группа называется старшей (главной), и главную цепь выбирают таким образом, чтобы к ней обязательно была прикреплена основная группа. Если в соединении присутствуют несколько функциональных групп, то выбор и нумерацию главной цепи определяет старшая из них (старшинство группы тем выше, чем выше она расположена в нижеприведённой таблице):
|
Класс |
Функциональная группа |
приставка |
суффикс |
|
Карбоновые кислоты |
`-"COOH"` |
карбокси |
овая кислота |
|
Альдегиды |
`-"CHO"` |
оксо |
аль |
|
Кетоны |
`>"C"="O"` |
оксо |
он |
|
Спирты |
`-"OH"` |
гидрокси |
ол |
|
Амины |
`-"NH"_2` |
амино |
амин |
|
Галоидпроизводные |
`"F", "Cl", "Br", "I"` |
фтор, хлор, бром, иод |
фторид, хлорид, бромид, иодид |
|
Нитро- соединения |
`-"NO"_2` |
нитро |
- |
Остальные функциональные группы рассматривают как боковые заместители и обозначают в полном названии приставками (префиксами).
В данном примере корнем будет пент. Далее идут суффиксы -ан (насыщенное соединение) и -он (класс кетонов). Заместителями в молекуле являются две метильные группы в положениях `2` и `4` и бром в положении `1` (нумерация произведена так, чтобы положения заместителей обозначались возможно меньшими номерами). Старшей функциональной группой является карбонильная группа, расположенная у третьего атома углерода. Полное название соединения будет таким:
`1`-бром-`2,4`-диметилпентанон-`3`.
Соединение содержит `7` атомов углерода, его корень – гепт, далее идет суффикс -ен, указывающий на наличие ненасыщенности (двойной связи). Порядок нумерации обеспечивает старшей группе `–"OH"` наименьший номер. Полное название заканчивается суффиксом -ол, обозначающим старшую группу (суффикс -ол указывает на наличие гидроксильной группы). Положение двойной связи и гидроксильной группы указывается цифрами. Следовательно, приведённое соединение называется
гептен-`6`-ол-`2`.
В основе соединения `3` атома углерода, поэтому корень в названии проп, далее идут суффиксы -ан (насыщенное соединение) `+` -овая кислота (класс карбоновых кислот) При втором атоме углерода – метильная группа, полное название
`2`-метилпропановая кислота.
Многие соединения имеют устоявшиеся несистематические названия, такие, как глюкоза, муравьиная кислота, уксусная кислота, ацетон. Многие из этих так называемых тривиальных названий узаконены правилами ИЮПАК. Например, `2`-метилпропановая кислота называется изомасляной кислотой. В разделе «гомологические ряды органических соединений» тривиальные названия указаны в скобках.
До появления теории химического строения А. М. Бутлерова оставалось неизвестным существование веществ, которые имеют один и тот же состав и одну и ту же молекулярную массу, но различающиеся расположением атомов. Эти вещества обладали разными свойствами. Способность атомов углерода к образованию четырёх ковалентных связей, в том числе и с другими атомами углерода, открывает возможность существования нескольких соединений одного элементного состава. Такое явление было названо изомерией.
До создания теории химического строения было известно всего лишь одно вещество состава `"C"_4"H"_(10)` - бутан, который имеет линейное строение углеродной цепи. А. М. Бутлеров предположил возможность существования ещё одного вещества с такой же молекулярной формулой, но с другой последовательностью расположения атомов углерода в молекуле. Таким образом, был получен изомер бутана, который получил название изобутана (имеет разветвлённое строение).
Для пентана существует три изомера:
Температуры кипения бутана и пентана отличаются между собой, что служит доказательством того, что свойства соединений находятся в зависимости от строения их молекул.
это вещества, которые имеют одинаковую молекулярную формулу, но различное химическое строение (различные структурные формулы), а, следовательно, обладают различными свойствами.
В органической химии существует несколько типов изомерии. Самым простым является структурная изомерия.
называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединений атомов).
В этом случае изомеры отличаются друг от друга только порядком связи между атомами в молекуле. Структурная изомерия имеет несколько разновидностей.
Изомерия углеродного скелета зависит от порядка соединения между собой атомов углерода в цепи (см. изомеры бутана и пентана).
Для правильного составления изомеров углеродного скелета необходимо соблюдать некоторые правила:
1. Записать углеродный скелет согласно числу атомов углерода.
$$ \stackrel{1}{\mathrm{C}}-\stackrel{2}{\mathrm{C}}-\stackrel{3}{\mathrm{C}}-\stackrel{4}{\mathrm{C}}-\stackrel{5}{\mathrm{C}}$$
2. Отрывают крайние атомы углерода (`"C"_1` или `"C"_5`) и располагают их у оставшихся в цепи атомов углерода, добиваясь максимально возможного числа перестановок. В результате чего первоначально записанный углеродный скелет укорачивается и принимает разветвлённое строение:
Следует иметь в виду, что произвольное укорачивание углеродной цепи исходного углеводорода не приводит к появлению нового изомера, а зачастую представляют собой одно и то же соединения.
Например, приведённые ниже формулы представляют собой вещество - пентан.
3. Соблюдая условие четырёхвалентности атомов углерода, необходимо заполнить оставшиеся валентности атомами водорода
(*н – означает углеводород нормального (неразветвленного) строения).
Другой разновидностью структурной изомерии является
Например, положения кратной связи:
| `"CH"_2="CH"-"CH"_2-"CH"="CH"_2` | `"CH"_2="CH"-"CH"="CH"-"CH"_3` | |
| пентадиен-1,4 | пентадиен-1,3 |
Или изомерия положения функциональной группы:
Если гидроксильных групп две, то число изомеров может также определяться взаимным расположением этих групп:
| `"HOCH"_2-"CH"_2-"CH"_2"OH"` | `"HOCH"_2-"CH"("OH")-"CH"_3` | |
| пропандиол-1,3 | пропандиол-1,2 |
Ещё одним видом изомерия является
Например, одной и той же молекулярной формуле `"C"_2"H"_6"O"` соответствуют два разных по строению вещества, относящиеся к различным классам органических соединений - этиловый спирт и диметиловый эфир.
| `"CH"_3-"CH"_2-"OH"` | `"CH"_3-"O"-"CH"_3` |
Различное расположение в соединении атомов между собой является причиной различных химических свойств этих соединений. Например, кислотные свойства проявляет только этанол при взаимодействии с металлическим натрием. Этиловый спирт - жидкость, диметиловый эфир - газообразное вещество.
Другим примером межклассовой изомерии являются карбоновые кислоты и сложные эфиры, например:
| `"CH"_3-"CH"_2"COOH"` | `"CH"_3-"COOCH"_3` | `"HCOOC"_2"H"_5` | ||
| Пропановая кислота | Метилацетат | Этилформиат |
Виды пространственной изомерии
называют соединения, имеющий одинаковый состав и одинаковый порядок соединения атомов, но отличающиеся расположением атомов в пространстве.
Геометрическая изомерия характерна для соединений, содержащих двойную связь или цикл. В таких молекулах часто возможно провести условную плоскость таким образом, что заместители у различных атомов углерода могут оказаться по одну сторону (цис-) или по разные стороны (транс-) от этой плоскости. Если изменение ориентации этих заместителей относительно плоскости возможно только за счёт разрыва одной из химических связей, то говорят о наличии геометрических изомеров.
|
цис-1,3-диметициклолгексан |
транс-1,2-дихлорциклогексан |
|
|
цис-бутен-2 |
транс-бутен-2 |
Оптическая изомерия возникает тогда, когда предмет - органическая молекула - несовместим со своим изображением в зеркале. Такое свойство обозначается термином «хиральность», а пространственные изомеры называются зеркальными, оптическими антиподами, или энантиомерами. В виде энантиомеров существует, например, молочная кислота `"CH"_3-"CH"("OH")-"COOH"`:

Энантиомеры имеют одинаковые температуры плавления и кипения, растворимость, показатель преломления и другие характеристики. Их отличия проявляются только при изучении вращения веществом плоскости поляризации света или при взаимодействии с другим хиральным соединением. Способность вращать плоскость поляризации света называется оптической активностью. Смесь равных количеств энантиомеров называется рацематом.
Органические реакции классифицируют по различным признакам:
Рассмотрим подробно каждую классификацию.
Радикальные реакции сопровождаются гомолитическим разрывом связей и образованием радикалов – нейтральных частиц, содержащих один или несколько неспаренных электронов:
Радикальные реакции распространены в превращениях алканов. Например, в хлорировании метана атом хлора выступает в роли радикального реагента, а реакция протекает как реакции радикального замещения и обозначается `"S"_"R"`.
Ионные реакции протекают с участием ионов и сопровождаются гетеролитическим разрывом связей в субстрате:
$$ \mathrm{R} \overline{):} \mathrm{X}\to \underset{\mathrm{карбокатион}}{{\mathrm{R}}^{+}}+\underset{\mathrm{анион}}{{\mathrm{X}}^{-}},$$
$$ \mathrm{R} \overline{):} \mathrm{X}\to \underset{\mathrm{карбанион}}{{\mathrm{R}}^{-}}+\underset{\mathrm{катион}}{{\mathrm{X}}^{+}}.$$
Заряженную частицу, имеющую вакантную `p`-орбиталь на атоме углерода, называют карбокатионом.
Заряженную частицу, имеющую НЭП на атоме углерода, называют карбанионом.
Ионные реакции чаще других встречаются среди превращений органических соединений:
$$ \underset{\mathrm{метиламин}}{{\mathrm{CH}}_{3}-\stackrel{··}{\mathrm{N}}{\mathrm{H}}_{2}}+\underset{\mathrm{хлороводород}}{\mathrm{HCl}}\underset{\mathrm{метиламмонийхлорид}}{\rightleftarrows \left[{\mathrm{CH}}_{3}-\stackrel{+}{\mathrm{N}}{\mathrm{H}}_{3}\right]{\mathrm{Cl}}^{-}}$$
$$ \underset{\mathrm{гидроксид}\text{-}\mathrm{ион}}{{\mathrm{HO}}^{-}}+\underset{\mathrm{хлорметан}}{\overset{\mathrm{\delta }+ }{{\mathrm{CH}}_{3}}}\to \stackrel{\mathrm{\delta }-}{\mathrm{Cl}}\to \underset{\mathrm{метанол}}{\mathrm{HO}-{\mathrm{CH}}_{3}}+\underset{\mathrm{хлорид}\text{-}\mathrm{ион}}{{\mathrm{Cl}}^{-}}$$.
Нейтральные молекулы или положительно заряженные реагенты, которые в ходе реакции принимают электронную пару для образования ковалентной связи с субстратом, называют электрофильными реагентами или электрофилами (например, `"R"^+`, `"Cl"^+`, `"NO"_2^+` и т. д.).
Нейтральные молекулы или отрицательно заряженные реагенты, которые в ходе реакции отдают свою электронную пару для образования связи с субстратом, называют нуклеофильными реагентами или нуклеофилами (например, `"OH"^-`, `"C"_2"H"_5"O"^-`, `"Br"^-` и т. д.).
|
Тип химического превращения |
Обозначения органических реакций |
||
|
Радикалы |
нуклеофилы |
электрофилы |
|
|
Замещение `("S")` |
`"S"_"R"` |
`"S"_"N"` |
`"S"_"E"` |
|
Присоединение `("A")` |
`"A"_"R"` |
`"A"_"N"` |
`"A"_"E"` |
1) Реакция замещения - реакция, в ходе которой атом водорода или функциональная группа в исходной органической молекуле замещается на какую-либо функциональную группу или атом водорода. Исходные вещества принято называть реагентами. Для удобства один из реагентов принято называть субстратом, а другой - атакующей частицей. Субстрат имеет более сложное строение, атакующий реагент часто имеет неорганическую природу.
Различают радикальные, нуклеофильные и электрофильные реакции замещения. Рассмотрим примеры.
Реакция электрофильного замещения `"H"^+` на `"NO"_2^+` в бензольном кольце `("S"_"E")`:
Реакция нуклеофильного замещения `"Cl"^-` на `"OH"^-` в галогенпроизводных алканах `("S"_"N")`:
Реакция радикального замещения в алканах `("S"_"R")`
2) Реакция присоединения `(А)` - реакция, в ходе которой реагент присоединяется по кратным связям `("C"="C", "C"="O", "C"="N")` молекулы субстрата.
`"CH"_2="CH"_2+"H"_2"O" -> "CH"_3-"CH"_2"OH"`
3) Реакция отщепления (элиминирования) `(Е)` - реакция, в ходе которой от субстрата отщепляется молекула или частица (вода, галогеноводород).
4) Перегруппировка - реакция, в ходе которой замещение, присоединение или отщепление сопровождается также и изменениями углеродного скелета молекулы. В некоторых случаях соответствующее превращение идёт без изменения молекулярной формулы и представляет собой изомеризацию.
5) Реакция полимеризации - химический процесс, в котором молекулы ненасыщенного углеводорода присоединяются одна к другой за счёт разрыва `pi`-связей и образования новых `sigma`-связей.
$$ \underset{\mathrm{мономер}}{n{\mathrm{CH}}_{2}={\mathrm{CH}}_{2}}\to \underset{\mathrm{полимер}}{\overline{)(}{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}{\overline{))}}_{n}}$$, где `n` - степень полимеризации.
Некаталические реакции не требуют присутствия катализатора. Эти реакции ускоряются только при повышении температуры, иногда их называют термическими.
Каталитическими называют реакции, протекание которых требует присутсвия катализатора.
Фотохимические реакции - реакци, которые активируют облучением. Такой способ активирования обозначают `hnu`.
Брутто-формула химического вещества – формула, дающая информацию о том, какие атомы и в каком количестве присутствуют в молекуле данного соединения:
С12Н22О11 С2Н2О4 С3Н9N
сахароза щавелевая кислота триэтиламин
Чаще брутто-формулы называют молекулярными. Они удобны для проведения расчетов, связанных с молярными массами веществ, однако химики всё же предпочитают при написании брутто-формул вносить минимальную информацию о структуре молекул:
C2H5OH HCOOH C6H5COONa
этанол муравьиная кислота бензоат натрия
Структурная формула описывает порядок соединения атомов в молекуле. Химические связи изображаются чёрточками. Связь между водородом и остальными атомами обычно не указывается. Для изображения циклических структур широко используются общепринятые символы:
![]() |
![]() |
![]() |
| пропанол-2 | метилфениловый эфир | 2-метилцикло-пентанон |
Для изображения электронного строения молекул используются электронные формулы (структуры Льюиса, октетные формулы). При написании электронной формулы должно выполняться правило октета, согласно которому атом, участвуя в образовании химической связи (отдавая или принимая электроны), стремится приобрести электронную конфигурацию инертного газа – октет (восемь) валентных электронов. Исключение составляет атом водорода, для которого устойчивой является конфигурация гелия, т. е. 2 валентных электрона.
Общую пару электронов иногда обозначают чёрточкой, которая и символизирует внутримолекулярную химическую связь.


Соединения, сходные по строению и химическим свойствам и отличающиеся друг от друга на гомологическую разность `"CH"_2` или в общем случае на `("CH"_2)_n`, называются гомологами и образуют единый гомологический ряд. Ниже приведены некоторые представители гомологического ряда алканов и предельных одноосновных карбоновых кислот, а также их общие формулы:
|
`"CH"_4` - метан `"C"_2"H"_6` - этан `"C"_3"H"_8` - пропан `"C"_4"H"_(10)` - бутан `"C"_5"H"_(12)` - пентан `"C"_6"H"_(14)` - гексан `bb("C"_n"H"_(2n+2))` |
`"HCOOH"` - метановая (муравьиная) кислота `"CH"_3"COOH"` - этановая (уксусная) кислота `"C"_2"H"_5"COOH"` - пропановая (пропионовая) кислота `"CH"_3("CH"_2)_2"COOH"` - бутановая (масляная) кислота `"CH"_3("CH"_2)_3"COOH"` - пентановая (валериановая) кислота `"CH"_3("CH"_2)_4"COOH"` - гексановая (капроновая) кислота `bb("C"_n"H"_(2n+1)"COOH")` |
Простейшие представители гомологического ряда алкенов - `"CH"_2="CH"_2` (этен), а алкинов - `"CH"-="CH"` (этин, ацетилен). Структурные формулы их ближайших гомологов вместе с общей формулой имеют вид:
|
`"CH"_2="CH"-"CH"_3` - пропен `"CH"_2="CH"-"CH"_2-"CH"_3` - бутен-`1` `"CH"_2="CH"-"CH"_2-"CH"_2-"CH"_3`-пентен-`1` `bb("C"_n"H"_(2n))` |
`"CH"-="C"-"CH"_3` - пропин `"CH"-="C"-"CH"_2-"CH"_3` - бутин-`1` `"CH"-="C"-"CH"_2-"CH"_2-"CH"_3` -пентин-`1` `bb("C"_n"H"_(2n-2))` |
Гомологический ряд бензола имеет общую формулу `"C"_n"H"_(2n-6)`. Гомологи можно рассматривать как производные бензола, в котором один или несколько атомов водорода замещены различными углеводородными радикалами. Например:
`"C"_6"H"_5"CH"_3`- метилбензол (толуол)
`"C"_6"H"_4("CH"_3)_2` - диметилбензол (ксилол)
`"C"_6"H"_5"C"_2"H"_5` - этилбензол
`"C"_6"H"_5"CH"("CH"_3)_2` - изопропилбензол (кумол)
Часто химические связи образуются за счёт электронов, расположенных на разных атомных орбиталях. Казалось бы, и связи в молекуле по прочности должны быть неравноценными. Однако опыт показывает, что они равнозначны. Это явление объясняется представлением о гибридизации атомных орбиталей, введённым американским химиком Л. Полингом.
Рассмотрим образование молекулы метана. Атом углерода в возбужденном состоянии обладает четырьмя неспаренными электронами: одним s-электроном и тремя р-электронами – 1s22s12p3. Экспериментальные данные показали, что все четыре связи С-Н в молекуле метана СН4 одинаковы и направлены к вершинам тетраэдра (угол между ними составляет 109о28').
Одинаковая прочность связей объясняется гибридизацией валентных (внешних) орбиталей, то есть смешением их и выравниванием по форме и энергии. При этом число гибридных орбиталей равно числу исходных.
![]() |
Четыре совершенно одинаковые sp3 –гибридные орбитали атома углерода расположены под углом 109о28' друг к другу и направлены к вершинам тетраэдра, в центре которого находится атом углерода. На рисунке видно, что гибридная орбиталь асимметрична и сильно вытянута по одну сторону от ядра.
Это обусловливает более сильное перекрывание гибридных орбиталей с орбиталями других атомов по сравнению с перекрыванием «обычных» s- и р-орбиталей и приводит к образованию более прочных связей.
Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры атомов, называется σ (сигма) – связью.
Так как гибридные электронные орбитали направлены к вершинам тетраэдра, то при образовании молекулы пропана С3Н8 направление химической связи между вторым и третьим атомами углерода не может совпадать с направлением связи между первым и вторым атомами углерода. Образуется угол 109о28'. Такие же углы существуют между четвертым, пятым и другими атомами углерода. Углеродная цепь принимает зигзагообразную форму:

Ещё один вид гибридизации осуществляется в соединениях углерода ряда этилена. В этом случае происходит гибридизация одной s- и двух р-орбиталей углерода (sp2 –гибридизация). При этом образуются три одинаковые sp2 –гибридные орбитали, расположенные под углом 120о друг к другу. Таким образом каждый атом углерода имеет по три гибридных электронных облака и по одному негибридному р-облаку. Гибридные электронные облака взаимно перекрываются и образуют между атомами углерода σ –связь:

Остальные гибридные электронные облака атомов углерода перекрываются с s-облаками атомов водорода и также образуют σ -связи. Негибридные p-орбитали взаимно перекрываются в плоскости, которая расположена перпендикулярно плоскости σ-связей:

Ковалентная связь, возникающая при перекрывании орбиталей по обе стороны линии, связывающей центры атомов, называется π (пи) – связью.
Ещё одним примером, где происходит sp2 –гибридизации углерода, является молекула бензола. Три атомные орбитали (одна s и две р) каждого углерода в молекуле бензола гибридизируются и образуют три σ -связи. Гибридные орбитали перекрываются друг с другом. Перекрывание всех электронных облаков на одном рисунке показать трудно, поэтому рассмотрим последовательно два рисунка. Ниже приведены схема образования σ -связей в молекуле бензола:

Негибридные р-электронные орбитали атомов углерода расположены перпендикулярно плоскости направления σ-связей, они также перекрываются друг с другом, образуя единую систему π-связей:

В молекуле ацетилена С2Н2 каждый атом углерода находится в sp-гибридном состоянии, образуя две гибридные связи, направленные под углом 180о друг к другу. Они, как уже упоминалось выше, называются σ - связями.

Но в молекуле ацетилена в каждом из атомов углерода содержится ещё по два p-электрона, которые не принимают участие в образование σ – связей. Молекула ацетилена имеет плоский линейный «скелет», поэтому оба р-электронных облака в каждом из атомов выступают из плоскости в перпендикулярном к ней направлении. При этом происходит некоторое взаимодействие электронных облаков, но менее сильное, чем при образовании σ – связей. В итоге в молекуле ацетилена образуются ещё две ковалентные углерод-углеродные π-связи:

Под воздействием реагентов π-связь легко разрывается, она значительно слабее, чем σ–связь. π –связь образуется не только между атомами углерода, но и в случае образования двойных и тройных связей между углеродом и кислородом, углеродом и азотом.
Данный курс призван помочь вам систематизировать уже имеющиеся знания по химии и подготовиться к достойной сдаче единого государственного экзамена, а быть может, и к участию в олимпиадах.
К сожалению, в рамках настоящих методических указаний невозможно будет дать весь тот теоретический материал, который требуется для подготовки к поступлению в вуз. Поэтому для теоретической подготовки я советую использовать любое пособие с грифом «Рекомендовано Министерством образования и науки Российской Федерации в качестве учебного пособия для поступающих в вузы». Одним из лучших таких пособий традиционно являются «Начала химии» авторов Н.Е. Кузьменко, В.В Еремина, В.А. Попкова.
Я, в свою очередь, в теоретической части методических указаний постараюсь акцентировать ваше внимание в местах, вызывающих наибольшие затруднения у абитуриентов. Мы рассмотрим много коли-чественных и качественных задач, цепочек превращений. В первых двух контрольных работах будет большое количество теоретических вопросов, так как темы «Строение атома» и «Химическая связь» не предполагают решения расчетных задач. Однако для практического противовеса теории я дополнила эти темы расчетными задачами с использованием основных понятий и законов химии. Следующие две работы будут также включать в себя задания из двух разных тем каждая. Сделано это по причине того, что количество высылаемых методических указаний ограничено, поэтому приходится каждое издание наполнять максимально.
Подготовка к поступлению в вуз по химии, как и по любому другому предмету, должна иметь систематический характер. Необходимо как можно больше читать химической литературы и решать задачи и цепочки не только для того, чтобы сдать контрольную работу в ЗФТШ МФТИ, но и для совершенствования навыков решения, и для запоминания свойств веществ. В конце каждой контрольной работы я буду давать одну-две задачи повышенной сложности.
Я желаю вам удачи и в качестве напутствия хочу сказать, что удача всегда улыбается трудолюбивым!
В 1860 году на Международном съезде естествоиспытателей в немецком городе Карлсруэ были приняты определения атома и молекулы. Учения о строении веществ тогда ещё не было, поэтому было принято положение о том, что все вещества состоят из молекул. Впоследствии такое сплошное распространение принципа молекулярного строения на все вещества оказалось ошибочным.
Итак, согласно атомно-молекулярному учению, все вещества состоят из молекул, а молекулы - из атомов. Таким образом, мельчайшей частицей всех реально существующих веществ, является атом.
Наименьшей же частицей вещества, сохраняющей его химических свойства, является молекула. В физических процессах молекулы сохраняются, в химических - разрушаются. Атомы же остаются неизменными и в физических, и в химических процессах, и могут быть разрушены только в ядерных реакциях.
Массы атомов чрезвычайно малы. Например, масса атома водорода составляет примерно $$ \mathrm{1,67}·{10}^{-27}$$ кг, углерода - $$ \mathrm{1,99}·{10}^{-26}$$ кг, кислорода - $$ \mathrm{2,66}·{10}^{-26}$$ кг. Оперировать такими числами неудобно. Поэтому в химии пользуются не абсолютными значениями массы, а относительными, а в качестве эталона используют `1//12` часть массы атома изотопа углерода $$ {}^{12}\mathrm{C}$$.
У студентов и учащихся часто возникает вопрос, почему именно это значение было выбрано в качестве эталона. Понятие атомной массы ввёл Дж. Дальтон в 1803 году, единицей измерения атомной массы (атомной единицей массы - а .е. м.) сначала служила масса атома водорода, как самого легкого элемента (так называемая «водороднаяединица»). Однако при использовании такой шкалы возникали расчётные трудности. В результате в нaчaлe `"XX"` века за а. е. м. былa принята `1//16` часть массы атома изотопа кислорода $$ {}^{16}\mathrm{O}$$ (так называемая«кислородная единица»). Но в состав кислорода входят изотопы $$ {}^{17}\mathrm{O}$$ и $$ {}^{18}\mathrm{O}$$, что не позволяет выделить чистый образец изотопа $$ {}^{16}\mathrm{O}$$. В связи с этим кислород не может являться эталоном для определения а. е. м.. По международному соглашению с 1961 г. в качестве атомной единицы массы ($$ 1$$ а. е. м.) принятa `1//12` чaсть массы изoтoпа углeрoдa $$ {}^{12}\mathrm{C}$$ (этот изотоп в природной смеси преобладает - его $$ \mathrm{98,9}\%$$; остальные $$ \mathrm{1,1}\%$$приходятся на изотоп $$ {}^{13}\mathrm{C}$$).
Итак, атомная единица массы ($$ 1$$ а .е. м) - `1//12` часть массы атома изотопа углерода $$ {}^{12}\mathrm{C}$$ - равна:
$$ {m}_{a}\left(\mathrm{C}\right):12=\mathrm{1,99}·{10}^{-26}\mathrm{кг}:12=\mathrm{1,67}·{10}^{-27}\mathrm{кг}$$.
Относительная атомная масса показывает, во сколько раз масса атома какого-либо химического элемента больше а.е.м., поэтому данная величина не имеет размерности.
Относительная атомная масса элемента ($$ {A}_{r}$$) - это отношение абсолютной массы атома химического элемента к а. е м.
Значения относительных масс элементов приведены в периодической таблице Д.И. Менделеева.
Относительная молекулярная масса ($$ {M}_{r}$$) – это сумма относительных атомных масс всех атомов, входящих в её состав.
Например, $$ {M}_{r}\left({\mathrm{H}}_{2}{\mathrm{SO}}_{4}\right)=2{A}_{r}\left(\mathrm{H}\right)+{A}_{r}\left(\mathrm{S}\right)+4{A}_{r}\left(\mathrm{O}\right)=98$$.
До сих пор мы говорили об индивидуальных атомах и молекулах, а также об их массах, измеряемых в а.е.м., то есть относительных массах. Однако на практике нужное вещество взвешивается в граммах (или других единицах массы - кг, т), а не в а.е.м. Для того, чтобы перейти от молекулярной шкалы измерения масс к обычной, ввели единицу измерения количества вещества - моль.
это порция вещества (количество вещества $$ \nu $$), в которой содержится $$ \mathrm{6,02}·{10}^{23}$$ структурных единиц вещества (молекул, атомов, ионов или др., в зависимости от того, чья порция берётся).
Число $$ \mathrm{6,02}·{10}^{23}$$ называется постоянной Авогадро. Названа она в честь итальянского химика Амадео Авогадро. Она обозначается $$ {N}_{\mathrm{A}}$$ и выражает отношение единиц, используемых для измерения масс объектов микро- и макромира. Если $$ {A}_{r}$$ любого элемента, выраженную в граммах, разделить на абсолютную массу его атома, также выраженную в граммах, то всегда получится одно и то же число - постоянная Авогадро. Например, произведём расчёт этой постоянной на примере атома водорода:
$$ {A}_{r}\left(\mathrm{H}\right)=1,m\left(\mathrm{H}\right)=\mathrm{1,67}·{10}^{-24}\mathrm{г}$$ (или $$ 1$$ а.е.м.),
тогда
$$ {N}_{\mathrm{A}}={\displaystyle \frac{1\mathrm{г}}{1\mathrm{а}.\mathrm{е}.\mathrm{м}.}}={\displaystyle \frac{1\mathrm{г}}{\mathrm{1,67}·{10}^{-24}\mathrm{г}}}=\mathrm{6,02}·{10}^{23}$$.
Масса такой порции любого вещества называется молярной массой ($$ M$$) и выражается в г/моль.
Молярная масса `(M)` численно равна относительной молекулярной массе данного вещества ($$ {M}_{r}$$) выраженной в граммах. Например, $$ {M}_{r}\left(\mathrm{C}\right)=12$$, следовательно масса одного моль `"C"`, то есть `M("C")=12` г/моль.
Итак, один моль любого вещества содержит одно и то же числоструктурных единиц (атомов, молекул, ионов и пр.).
В современной литературе принято следующее определение моля:
это количество вещества ($$ \nu $$), содержащее такое число структурных единиц, сколько их содержится в $$ \mathrm{0,012}$$ кг изотопа углерода $$ {}^{12}\mathrm{C}$$.
Зная количество вещества, можно судить о числе частиц в определенной его порции и брать вещества для реакций в необходимых количествах. Иными словами, определять число атомов и молекул (структурных единиц) можно путём взвешивания порций веществ.
Таким образом, масса вещества, его количество, число структурных единиц (атомов, молекул, ионов и пр.) и число Авогадро связаны между собой соотношением:
$$ \nu ={\displaystyle \frac{m}{M}}={\displaystyle \frac{N}{{N}_{A}}}$$,
где $$ m$$ - масса вещества, г; $$ \nu $$ – количество вещества, моль; $$ M$$ - молярная масса, г/моль, $$ N$$ - число структурных единиц, $$ {N}_{\mathrm{A}}$$ - число Авогадро.
Отношение массы данного вида атомов к общей массе молекулы называется массовой долей данного элемента в соединении и обозначается $$ \omega $$.
Массовая доля элемента в соединении равна молярной массе элемента, умноженной на его индекс в химической формуле и деленной на молярную массу соединения.
Например, массовая доля элемента $$ A$$ в соединении $$ {A}_{x}{B}_{y}{C}_{z}$$ равна:
$$ \omega \left(A\right)={\displaystyle \frac{xM\left(A\right)}{M\left({A}_{x}{B}_{y}{C}_{z}\right)}}$$
Отношение количества вещества данного элемента в соединении к сумме количеств веществ всех элементов называется мольной долей данного элемента в соединении и обозначается $$ X$$.
Мольная доля элемента в соединении равна отношению его индекса в химической формуле к сумме индексов всех элементов в соединении.
Например, мольная доля элемента $$ A$$ в соединении $$ {A}_{x}{B}_{y}{C}_{z}$$ равна:
$$ X\left(A\right)={\displaystyle \frac{x}{x+y+z}}$$
Эти соотношения используются для различных расчётов.
По массовым долям элементов в соединении можно определить только их молярное соотношение между собой, т. е. простейшую формулу вещества; для определения истинной формулы необходимо дополнительно знать молярную массу вещества.
Определить количество вещества оксида алюминия и количество вещества атомного кислорода в оксиде алюминия массой $$ \mathrm{71,4}$$ г.
Формула оксида алюминия $$ {\mathrm{Al}}_{2}{\mathrm{O}}_{3}$$, молярная масса этого вещества составляет:
$$ M\left({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\right)=102$$ г/моль.
Используя вышеуказанное соотношение, находим количество вещества $$ {\mathrm{Al}}_{2}{\mathrm{O}}_{3}$$, которое содержится в $$ \mathrm{71,4}$$ г этого вещества:
$$ \nu \left({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\right)=m\left({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\right)/M\left({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\right)=\mathrm{71,4} \mathrm{г}:102 \mathrm{г}/\mathrm{мол}ь=\mathrm{0,7} \mathrm{моль}$$.
Поскольку $$ 1$$ молекула $$ {\mathrm{Al}}_{2}{\mathrm{O}}_{3}$$ cодержит $$ 3$$ атома кислорода, в $$ 1$$ моль оксида алюминия содержится $$ 3$$ моль атомного кислорода.
$$ \nu \left(\mathrm{O}\right)=3\nu \left({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\right)=3·\mathrm{0,7} \mathrm{моль}=\mathrm{2,1} \mathrm{моль}$$.
Массовая доля серы в оксиде $$ 40\%$$. Определить простейшую формулу оксида.
Формула оксида серы `"SO"_3`.
Вещество содержит $$ \mathrm{14,29}\%$$ (масс.) водорода и $$ \mathrm{85,71}\%$$масс углерода. Определить формулу этого вещества, если его молярная масса $$ 28 \mathrm{г}/\mathrm{моль}$$. При расчетах массовой доли удобнее всего рассматривать $$ 100$$ г вещества или массу $$ 1$$ моль вещества. Рассмотрим оба варианта.
1 способ. Возьмем $$ 100$$ г вещества $$ {\mathrm{C}}_{x}{\mathrm{H}}_{y}$$. Учитывая массовые доли элементов в этом соединении, находим массы углерода и водорода во взятой пробе этого вещества.
$$ m\left(\mathrm{C}\right)=m\left({\mathrm{C}}_{x}{\mathrm{H}}_{y}\right)·\omega \left(\mathrm{C}\right)/100\%=100 \mathrm{г}·\mathrm{0,8571}=\mathrm{85,71}\mathrm{г}$$
$$ m\left(\mathrm{H}\right)=m\left({\mathrm{C}}_{x}{\mathrm{H}}_{y}\right)·\omega \left(\mathrm{H}\right)/100\%=100 \mathrm{г}·\mathrm{0,1429}=\mathrm{14,29} \mathrm{г}$$
$$ 1$$ моль вещества $$ {\mathrm{C}}_{x}{\mathrm{H}}_{y}$$ состоит из $$ x$$ моль атомов `"C"` и $$ y$$ моль атомов `"H"`. Числа $$ x$$ и $$ у$$ относятся друг к другу, как количества веществ `"C"` и `"H"`. Поэтому находим количества веществ атомного углерода и водорода, содержащиеся в найденных массах.
$$ \nu \left(\mathrm{C}\right)=m\left(\mathrm{C}\right)/M\left(\mathrm{C}\right)=\mathrm{85,71} \mathrm{г}:12 \mathrm{г}/\mathrm{моль}=\mathrm{7,14} \mathrm{моль}$$
$$ \nu \left(\mathrm{H}\right)=m\left(\mathrm{H}\right)/M\left(\mathrm{H}\right)=\mathrm{14,29} \mathrm{г}:1 \mathrm{г}/\mathrm{моль}=\mathrm{14,29} \mathrm{моль}$$.
Находим отношение $$ x/y$$:
$$ x/y=\nu \left(\mathrm{C}\right)/\nu \left(\mathrm{H}\right)=\mathrm{7,14}:\mathrm{14,29}=1:2$$.
Получается, что формула соединения $$ {\mathrm{CH}}_{2}$$, однако такое соединение реально не существует. Мы нашли простейшую формулу вещества. Для установления истинной формулы потребуется молярная масса.
Известная по условию задачи молярная масса вещества складывается из относительных атомных масс элементов с учетом их содержания. Тогда проверяем соотношение $$ x/y=\nu \left(\mathrm{C}\right)/\nu \left(\mathrm{H}\right)=2:4$$.
$$ M\left({\mathrm{C}}_{x}{\mathrm{H}}_{y}\right)=x·12+y·1=2·12+4·1=28 \mathrm{г}/\mathrm{моль}$$.
Используя данное соотношение $$ x/y$$, мы вышли на заданную молярную массу, т. е. формула вещества $$ {\mathrm{C}}_{2}{\mathrm{H}}_{4}$$ (этилен).
2 способ. Возьмём $$ 1$$ моль вещества $$ {\mathrm{C}}_{x}{\mathrm{H}}_{y}$$. Его масса численно равна молярной массе, т. е. $$ 28$$ г. Находим массы отдельных компонентов:
$$ m\left(\mathrm{C}\right)=m\left({\mathrm{C}}_{x}{\mathrm{H}}_{y}\right)·\omega \left(\mathrm{C}\right)/100\%=28 \mathrm{г}·\mathrm{0,8571}=24 \mathrm{г}$$,
$$ m\left(\mathrm{H}\right)=m\left({\mathrm{C}}_{x}{\mathrm{H}}_{y}\right)·\omega \left(\mathrm{H}\right)/100\%=28 \mathrm{г}·\mathrm{0,1429}=4 \mathrm{г}$$.
Переводим массы в количества веществ атомных `"C"` и `"H"`:
$$ \nu \left(\mathrm{C}\right)=m\left(\mathrm{C}\right)/M\left(\mathrm{C}\right)=24 \mathrm{г}:12 \mathrm{г}/\mathrm{моль}=2 \mathrm{моль}$$,
$$ \nu \left(\mathrm{H}\right)=m\left(\mathrm{H}\right)/M\left(\mathrm{H}\right)=4 \mathrm{г}:1 \mathrm{г}/\mathrm{моль}=4 \mathrm{моль}$$.
В $$ 1$$ моль вещества $$ {\mathrm{C}}_{x}{\mathrm{H}}_{y}$$ содержится $$ 2$$ моль `"C"` и $$ 4$$ моль `"H"`, значит формула вещества $$ {\mathrm{C}}_{2}{\mathrm{H}}_{4}$$.
Найти массовую долю фосфата кальция в фосфорите, если массовая доля кальция в фосфорите составляет `26,1%`.
Фосфорит состоит из фосфата кальция и примесей, не содержащих кальций. Возьмём образец фосфорита массой `100` г. На массу кальция, содержащегося в этом образце, приходится `26,1%` от этой величины:
`m("Ca")=26,1` г.
Находим количество вещества кальция:
`nu("Ca")=m("Ca")//M("Ca")= 26,1 "г"// 40 "г"*"моль"^(-1)=0,65 "моль"`.
Кальций содержится в фосфорите в виде фосфата кальция `"Ca"_3("PO"_4)_2`. Согласно этой формуле, `1` моль фосфата кальция содержит `3` моль кальция. Находим количество вещества фосфата кальция:
`1 "моль":3 "моль"=x "моль":0,65 "моль"`,
`x = 0,65 : 3~~ 0,22 "моль"`.
Определим массу `0,22` моль фосфата кальция:
`m=nu*M=0,22 "моль"*310 " г"//"моль" = 67,4` г.
Но массовая доля вещества есть отношение его массы к массе всей смеси (образца фосфорита), поэтому
`omega=m//m_"фосф"*100% =67,4 "г":100 "г"*100% = 67,4%`.
Массовая доля `"Ca"_3("PO"_4)_2` в фосфорите составляет `67,4%`.
Определите возможную формулу бинарного соединения, одним элементом которого является азот. Массовая доля азота в соединении равна $$ \mathrm{36,84}\%$$, мольная доля – $$ 40\%$$.
Обозначим формулу соединения как $$ {\mathrm{N}}_{x}{\mathrm{R}}_{y}$$, где `"R"` - неизвестный элемент. Выразим мольную долю азота и найдем соотношение $$ y:х$$ :
$$ \mathrm{X}\left(\mathrm{N}\right)=\frac{x}{x+y}=\mathrm{0,4}$$,
Находим $$ y/x=\mathrm{1,5}/1$$.
Выражаем массовую долю азота и находим молярную массу `"R"`, которая позволит идентифицировать элемент:
$$ \omega \left(N\right)=\frac{M\left(\mathrm{N}\right)}{\mathrm{1,5}M\left(\mathrm{R}\right)+M\left(\mathrm{N}\right)}=\mathrm{0,3684}; M\left(\mathrm{R}\right)=16 \mathrm{г}/\mathrm{моль}$$
$$ M\left(\mathrm{R}\right)=16 \mathrm{г}/\mathrm{моль}$$, следовательно, второй элемент — кислород. Значит, формула соединения $$ {\mathrm{NO}}_{\mathrm{1,5}}$$, но такого соединения не существует. Тогда проверяем соотношение $$ 2:3\Rightarrow {\mathrm{N}}_{2}{\mathrm{O}}_{3}$$. Больше оксидов азота с данным соотношением элементов не существует.
$$ {\mathrm{N}}_{2}{\mathrm{O}}_{3}$$
Из курса химии средней школы вы знаете, что атом состоит из ядра и электронной оболочки. Ядро состоит из нуклонов - протонов и нейтронов, электронная оболочка - из электронов. Эти частицы называются элементарными.
В целом атом электронейтрален, так как заряды ядра и электронной оболочки компенсируют друг друга: число протонов в ядре равно числу электронов в электронной оболочке.
Таблица 1. Основные характеристики элементарных частиц
|
Частица |
Символ |
Масса |
Заряд* |
|
|
кг |
а.е.м. |
|||
|
Электрон |
`e^-` |
`9,109*10^(-31)` |
`1//1837` |
`–1` |
|
Протон |
`p^+` |
`1,673*10^(-27)` |
`1` |
`+1` |
|
Нейтрон |
`n^0` |
`1,675*10^(-27)` |
`1` |
`0` |
* Величина заряда электрона и протона равна `1,60*10^(-19)` Кл.
Масса атома в основном сосредоточена в ядре и определяется суммой масс протонов и нейтронов, т. к. электроны из-за своей малой массы на эту величину практически не влияют.
Сумма масс протонов и нейтронов называется массовым числом. При обозначении элемента она ставится как левый верхний индекс:
$$ {}_{7}{}^{14}\mathrm{N}$$.
Заряд ядра
важнейшая характеристика атома, лежащая в основе его современного определения. В Периодической системе Д. И. Менделеева порядковый номер элемента определяется именно зарядом ядра.
При обозначении элемента он ставится как левый нижний индекс.
Атомы с одинаковым зарядом ядра могут иметь разное количество нейтронов, то есть разные массы. Разновидности атомов одного и того же химического элемента, имеющие одинаковый заряд ядра, но разные массы, называют изотопами.
Изотопы
одного и того же элемента имеют одинаковые химические свойства, так как масса атома не играет существенной роли непосредственно в формировании этих свойств.
Элементарные частицы, составляющие атом, имеют очень малые массы и размеры и потому обладают специфическими свойствами, отличающими их от объектов окружающего нас макромира. В микромире перестают действовать некоторые законы классической физики, поэтому поведение электронов в атоме, как и других элементарных частиц, описывается квантовой механикой.
С позиций квантовой механики нельзя говорить о какой-либо определённой траектории движения электрона - можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.
Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью. Вероятность обнаружения электрона внутри орбитали составляет `90%`.
В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электрического заряда.
Нахождению электрона на орбитали соответствует минимальная энергия электрона, т. е. его наиболее устойчивое состояние. Чем ближе орбиталь находится к ядру, тем взаимодействие между ядром и электроном, находящимся на данной орбитали, сильнее, и энергия электрона ниже.
Те орбитали, на которых находятся электроны с одинаковой энергией, имеют одинаковую форму, называются вырожденными и формируют единый энергетический подуровень.
В свою очередь, близкие по энергии подуровни формируют единый энергетический уровень.
Таким образом, можно сделать вывод,
что электронная оболочка атома состоит из уровней, которые, в свою очередь, состоят из подуровней, на которых расположены электронные орбитали, а важнейшей характеристикой электрона является его энергия, величина которой зависит от его удаленности от ядра.
Для описания положения электрона в электронной оболочке используют четыре квантовых числа. Здесь мы не будем углубляться в квантово-механические подробности и опишем только утилитарный смысл данных чисел. Набор, состоящий из четырёх квантовых чисел - это «адрес» электрона в электронной оболочке.
Главное квантовое число `n` определяет полную энергию электрона на энергетическом уровне и показывает, из скольких энергетических уровней состоит электронная оболочка атома. Принимает целочисленные положительные значения от `1` до `oo`. В периодической таблице Д. И. Менделеева `n` равно номеру периода.
Орбитальное квантовое число `l` показывает, сколько энергетических подуровней составляют данный уровень и характеризует форму орбиталей. Принимает значения от `0` до `(n – 1)`.
При `n=1`, `l` принимает только одно значение `0` (этому числовому значению соответствует буквенное `s`), следовательно, на первом энергетическом уровне только один подуровень - `s`. Орбиталь `s`-подуровня имеет сферическую форму (рис. 1).
При `n=2`, `l` принимает два значения: `0` `(s)` и `1` `(p)`. Значит, второй энергетический уровень состоит из двух подуровней - `s` и `p`. Форма `p`-орбитали похожа на объёмную восьмёрку.
При `n=3`, `l` принимает уже три значения: `0(s)`; `1(p)` и `2(d)`. Таким образом, на третьем уровне три подуровня. Орбитали `d`-подуровня имеют форму двух перекрещенных объёмных восьмёрок либо объёмной восьмёрки с перемычкой (рис. 1).
При `n=4` значений `l` уже четыре, следовательно, и подуровней на четвёртом уровне четыре. К перечисленным выше добавляется `3(f)`. Орбитали `f`-подуровня имеют более сложную, объёмную, форму.
Магнитное квантовое число `ml` определяет число орбиталей на каждом подуровне и характеризует их взаимное расположение.
Принимает значения от `-l` до `+l`, включая `0`.
Например, при `l=0` `m_l` принимает только одно значение - `0`. Следовательно, орбиталь, находящаяся на данном подуровне (`s`-подуровне), только одна. Мы уже знаем, что она имеет форму сферы с центром в начале координат.
При `l=1`, `m_l` принимает три значения: `−1`; `0`; `+1`. Значит, орбиталей на данном подуровне (`p`-подуровне) три. Так как `p`-орбитали представляют из себя объёмные восьмёрки (то есть линейной структуры), располагаются они в пространстве по осям координат, перпендикулярно друг другу `(p_x,p_y,p_z)`.
При `l=2`, `m_l` принимает уже пять значений: `−2`; `−1`; `0`; `+1`; `+2`. То есть на `d`-подуровне располагаются пять орбиталей. Это плоскостные структуры, в пространстве занимают пять положений.
Ну и наконец, при `l=3`, то есть на `f`-подуровне, орбиталей становится семь, так как `m_l` принимает семь значений (от `−3` до `+3` через `0`). Орбитали являются более сложными объёмными структурами, и взаимное их расположение ещё более сложно.
`m_s` характеризует собственный момент количества движения электрона и принимает только два значения: `+1//2` и `-1//2`.
Электронная ёмкость подуровня (максимальное количество электронов на подуровне) может быть рассчитана по формуле `2(2l+1)`, а уровня — по формуле `2n^2`.
Всё вышесказанное можно обобщить в Таблице 2.
Таблица 2. Квантовые числа, атомные орбитали и число электронов на подуровнях (для `n<=4`)
|
`n` |
`l` |
Обозначение орбитали |
`ml` |
Число орби-талей |
Число электронов на подуровне |
|
`1` |
`0` |
`1s` |
`0` |
`1` |
`2` |
|
`2` |
`0` `1` |
`2s` `2p` |
`0` `−1`; `0`; `+1` |
`1` `3` |
`2` `6` |
|
`3` |
`0` `1` `2` |
`3s` `3p` `3d` |
`0` `−1`; `0`; `+1` `−2`; `−1`; `0`; `+1`; `+2` |
`1` `3` `5` |
`2` `6` `10` |
|
`4` |
`0` `1` `2` `3` |
`4s` `4p` `4d` `4f` |
`0` `−1`; `0`; `+1` `−2`; `−1`; `0`; `+1`; `+2` `−3`; `−2`; `−1`; `0`; `+1`; `+2`; `+3` |
`1` `3` `5` `7` |
`2` `6` `10` `14` |
Почему в химии уделяют такое большое внимание распределению электронов по энергетическим уровням и подуровням в атоме?
Химические свойства элементов и их соединений определяются электронным строением валентного уровня их атомов. Именно с участием электронов валентного уровня возникают химические связи между атомами и образуется соединение (вещество). Поэтому важно понимать правила заполнения электронных оболочек, строение валентного уровня и составлять электронную конфигурацию атомов элементов.
Распределение электронов по атомным орбиталям (АО) происходит в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда.
1. Принцип наименьшей энергии требует, чтобы электроны заселяли АО в порядке увеличения их энергии: в первую очередь заполняются подуровни с наиболее низкой энергией и далее - подуровни по мере роста их энергии.
Это отражает общие термодинамические тенденции - максимуму устойчивости системы соответствует минимум её энергии. Самым низким по энергии, как уже говорилось, является первый, ближайший к ядру энергетический уровень с `n=1`.
В многоэлектронных атомах электрон взаимодействует не только с ядром (электростатическое притяжение), но и с другими электронами (электростатическое отталкивание). В этом случае его энергия определяется не только главным `n`, но и орбитальным `l` квантовыми числами. Орбитальное число определяет форму орбиталей, и чем сложнее их форма, тем выше энергия подуровня, который они составляют. Таким образом, при одном и том же значении `n` энергия возрастает с ростом `l:`
`ns < np < nd < nf`.
Из спектров излучения и поглощения атомов экспериментально был определен ряд энергетической последовательности подуровней в электронной оболочке:
`1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d~~`
`~~4f < 6p < 7s < 6d ~~ 5f < 7p`.
Схематически распределение энергетических подуровней представлено на рис. 2.
2. В пределах одного подуровня электроны заселяют орбитали в соответствии с правилом Гунда: наименьшей энергией обладает конфигурация подуровня с максимальным спином. Это означает, что при заполнении подуровня электроны располагаются на орбиталях сначала поодиночке, а затем уже начинают образовывать пары.
Например, если на `p`-подуровне имеется три электрона, то сначала они располагаются так:
| ↑ | ↑ | ↑ |
В этом случае сумма спинов всех трех электронов (суммарный спин подуровня) будет равна `1/2+1/2+1/2=1 1/2`.
$$ \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.+\raisebox{1ex}{${\displaystyle 1}$}\!\left/ \!\raisebox{-1ex}{${\displaystyle 2}$}\right.+\raisebox{1ex}{${\displaystyle 1}$}\!\left/ \!\raisebox{-1ex}{${\displaystyle 2}$}\right.=1\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.$$.
Если бы электроны расположились так:
| ↓↑ | ↑ |
то суммарный спин был бы равен `1/2-1/2+1/2=1/2`.
$$ \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.-\raisebox{1ex}{${\displaystyle 1}$}\!\left/ \!\raisebox{-1ex}{${\displaystyle 2}$}\right.+\raisebox{1ex}{${\displaystyle 1}$}\!\left/ \!\raisebox{-1ex}{${\displaystyle 2}$}\right.=\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$2$}\right.$$.
Правило Гунда выведено на основании изучения атомных спектров. Квантово-механическая природа этого правила основана на том, что электроны с разными значениями `m_l` (в нашем примере `–1`; `0`; `+1`) наиболее пространственно удалены друг от друга и энергия их электростатического отталкивания минимальна.
3. Принцип Паули (или принцип запрета Паули) утверждает, что в атоме не может быть двух электронов с одинаковым набором всех четырёх квантовых чисел.
Как следствие, на одной орбитали не может существовать более двух электронов. При этом их спины будут противоположными.
Все вышеизложенные правила определяют энергию электрона, электронную конфигурацию атома и местоположение элемента в Периодической системе Д. И. Менделеева.
называется обозначение того, как электроны распределяются по энергетическим уровням (электронным оболочкам), подуровням и орбиталям.
Электронную конфигурацию атома составляют следующим образом: записывают главное квантовое число цифрой, затем - букву, соответствующую квантовому числу `l`, и далее указывают в виде надстрочного индекса справа число электронов на подуровне.
Так, для атома `"H"` электронная конфигурация имеет вид `1s^1`, для атома `"He"-1s^2`. Если хотят показать число электронов не только на подуровне, но и на орбиталях, то представляют орбитальную диаграмму. Орбитали на диаграмме обычно изображают в форме прямоугольников.
|
|
Электроны изображают в виде стрелок.
`darruarr`
Две стрелки в одном квадрате указывают, что на орбитали присутствуют два электрона с противоположными спинами, одна стрелка - один неспаренный электрон, пустой квадрат - орбиталь без электронов:
Каждая группа орбиталей одного подуровня сохраняет обозначение подуровня. Например, электронная конфигурация атома бора $$ {}_{5}\mathrm{B}$$ имеет вид `1s^2 2s^2 2p^1`, ей соответствует следующая орбитальная диаграмма:
У атома следующего за бором элемента углерода $$ {}_{6}\mathrm{C}$$ число электронов и протонов увеличивается на единицу. На какой орбитали разместится следующий электрон? В соответствии с правилом Гунда, электроны избегают занимать одну и ту же орбиталь настолько, насколько это возможно. И, следовательно, орбитальная диаграмма углерода будет выглядеть так:
После того, как электроны поодиночке заполнят орбитали одного подуровня, они начинают образовывать пары. У атома кислорода $$ {}_{8}\mathrm{O}$$ электронная конфигурация `1s^2 2s^2 2p^4`, а орбитальная диаграмма следующая:
Завершается заполнение `p`-подуровня второго уровня у атома благородного газа неона: $$ {}_{10}\mathrm{Ne}$$ `1s^2 2s^2 2p^6`
Такая конфигурация внешнего уровня придаёт энергетической оболочке любого благородного газа очень большую устойчивость вследствие равномерного, практически сферически симметричного распределения отрицательного заряда.
Заполненные энергетические подуровни, которые соответствуют электронным конфигурациям благородных газов, называют электронным остовом. Внешние электронные уровни, на которых располагаются электроны, наименее прочно связанные с ядром и участвующие в химических реакциях, называются валентными.
При написании электронных формул часто заменяют формулу электронного остова химическим символом соответствующего благородного газа, взятым в квадратные скобки, например, `1s^2 2s^2 2p^6=["Ne"]` и тогда электронную формулу, например, алюминия `1s^2 2s^2 2p^6 3s^2 3p^1` можно записать проще: `["Ne"]3s^2 3p^1`. При составлении же орбитальных диаграмм вообще не имеет смысла рисовать электронный остов - для понимания химических свойств элемента достаточно уметь правильно составлять диаграмму его валентного уровня. При этом важно изображать и вакантные орбитали валентных подуровней (если таковые имеются), чтобы учитывать возможность распаривания электронных пар при переходе атома в возбужденное состояние. Например, электронная конфигурация серы `["Ne"]3s^2 3p^4`, её валентный уровень с помощью орбитальной диаграммы можно изобразить так:
Несмотря на то, что на `3d`-подуровне у серы нет электронов, орбитали этого подуровня следует изображать. При поглощении кванта энергии атом серы может перейти в возбуждённое состояние `"S"^(**)` и распарить свои электронные пары с `3s`- и `3p`-подуровней на более высокий по энергии `3d`-подуровень: