Все статьи » ЗФТШ Физика

Статьи , страница 159

  • §4. Термодинамические процессы

    4.1. Квазистатические процессы


    Всякое изменение в термодинамической системе, связанное с изменением хотя бы одного из её параметров состояния, называется термодинамическим процессом.

    Пусть в сосуде с поршнем находится некоторая порция газа. Тогда примером термодинамического процесса может служить процесс, в котором при перемещении поршня происходит изменение объёма $$ V$$ газа в сосуде. При этом каждому значению объёма $$ V$$ в состоянии теплового равновесия будет соответствовать определённое значение давления газа $$ p$$. Следовательно, между объёмом газа и его давлением будет существовать некоторая зависимость $$ p\left(V\right)$$, которую можно представить графически, т. е. построить её график в координатах $$ p,V$$.

    Каждое равновесное состояние газа изображается на таком графике соответствующей точкой, а сам график изображает изменение параметров газа, т. е. даёт графическое описание теплового процесса.

    Но всякое изменение одного из параметров означает, что система вышла из состояния теплового равновесия и ей уже нельзя приписать в целом ни определённого давления, ни определённой температуры.

    Например, при быстром опускании поршня (т. е. при сжатии газа) параметры состояния газа (например, давление, плотность и температура) вблизи поршня изменятся довольно существенно. В то же время вдали от поршня изменение состояния газа произойдёт несколько позже. Поэтому газ в целом имеет разные давления и температуры в различных точках, и такое состояние газа нельзя изобразить графически. Возникает естественный вопрос: каким же образом необходимо изменять параметры системы, чтобы можно было в процессе их изменения характеризовать газ тем же числом параметров и использовать уравнение состояния, справедливое, строго говоря, только для состояния теплового равновесия?

    Как показывает опыт, любая система, выведенная из состояния равновесия и предоставленная самой себе, переходит по прошествии некоторого времени в состояние теплового равновесия. Процесс перехода к равновесному состоянию называется релаксацией, а время, необходимое для этого, временем релаксации. Это время и определяет скорость изменения параметров системы. Если время перехода из одного равновесного состояния в другое много больше времени релаксации, то все отклонения от равновесного состояния будут успевать исчезать и система будет проходить через ряд равновесных состояний, переходящих одно в другое. Такие процессы называются квазистатическими, потому что при этом в каждый данный момент состояние системы мало отличается от равновесного.

    Таким образом, если в рассматриваемом нами примере процесс изменения объёма идёт достаточно медленно, то давление и температура газа во всем объёме успевают сравняться и принимают в каждый момент времени одинаковые по всему объёму значения. Это означает, что в таком процессе газ проходит через последовательность равновесных (почти равновесных) состояний. Так как в равновесном процессе давление $$ p$$, температура $$ T$$ и объём $$ V$$ в каждый момент времени имеют вполне определённые значения, то существуют зависимости между $$ p$$ и $$ T$$, $$ V$$ и $$ T$$, $$ p$$ и $$ V$$. Следовательно, квазистатические процессы можно изображать в виде графиков этих зависимостей, например, $$ p\left(V\right)$$ или $$ V\left(T\right)$$. Неравновесный процесс невозможно изобразить графически.

    Ясно, что с помощью уравнения состояния можно изучать только квазистатические процессы. Времена релаксаций, определяющие степень медленности квазистатического процесса, для разных систем и различных тепловых процессов сильно отличаются друг от друга, и для их определения нужно проводить очень трудный и сложный дополнительный анализ. В дальнейшем рассматриваются только квазистатические процессы.

    Процессы, протекающие при постоянной массе газа и неизменном значении одного из параметров состояния газа (давление, объём или температура), принято называть изопроцессами. Например, процесс, происходящий при постоянной температуре, называется изотермическим, при постоянном объёме – изохорическим (или изохорным), при постоянном давлении – изобарическим (или изобарным).


    4.2. Изотермический процесс. Закон Бойля – Мариотта


    В XVII веке независимо друг от друга английский физик Бойль и французский физик Мариотт экспериментально установили закон изменения объёма газа при изменении давления: для данной массы любого газа при постоянной температуре его объём обратно пропорционален давлению.

    Закон носит название закона Бойля – Мариотта и обычно записывается в виде:

    $$ pV=\mathrm{const}$$,

    где значение константы определяется температурой, при которой происходит данный процесс.

    График этого процесса (изотерма) в координатах $$ p$$ и $$ V$$ изобразится кривой, определяемой уравнением: 

    $$ p={\displaystyle \frac{\mathrm{const}}{V}}$$.

    Эта кривая, как известно из математики, называется гиперболой. На рисунке $$ 1$$ изображены изотермы одной и той массы газа для двух разных температур $$ {T}_{1}$$ и  $$ {T}_{2}$$ $$ ({T}_{2}>{T}_{1})$$. Изотерма, соответствующая бóльшей температуре, проходит выше, так как при одинаковых объёмах бóльшей температуре соответствует и бóльшее давление. 



    4.3. Изобарический процесс. Закон Гей-Люссака


    Поместим газ в сосуд с вертикальными стенками и подвижным поршнем, имеющим массу $$ {m}_{\mathrm{п}}g$$ и площадь сечения $$ S$$ который может перемещаться без трения (рис. $$ 2$$). Пусть на поршень сверху действует атмосферное давление $$ {p}_{0}$$. Рассмотрим равновесное состояние газа, характеризуемое давлением $$ p$$. Величину этого давления найдём из условия механического равновесия для поршня.




    На поршень действуют две силы, направленные вертикально вниз (сила тяжести $$ {m}_{\mathrm{п}}$$ и сила давления атмосферы $$ {p}_{0}S$$), и направленная вертикально вверх сила давления со стороны газа под поршнем, значение которой равно $$ pS$$. Условие равновесия поршня $$ -$$ равенство нулю равнодействующей этих сил. Отсюда для давления $$ p$$  газа находим:

    $$ p={p}_{0}+{\displaystyle \frac{{m}_{\mathrm{п}}g}{S}}$$

    Внешнее давление на газ также равно $$ p$$. Как показывает опыт, при квазистатическом (медленном) нагревании газа под поршнем при постоянном внешнем давлении, объём всех без исключения газов увеличивается, а при охлаждении уменьшается.

    Исследуя на опыте тепловое расширение газов при постоянном давлении, французский учёный Гей-Люссак открыл, что объём $$ V$$ газа данной массы при изменении температуры  $$ t\left({}^{\circ }\mathrm{C}\right)$$ изменяется по линейному закону:

    $$ V={V}_{0}(1+\alpha t)$$.

    Здесь $$ {V}_{0} -$$ объём газа при температуре $$ 0{}^{\circ }\mathrm{C}$$, $$ \alpha  -$$ коэффициент объёмного расширения при постоянном давлении. Оказалось, что для всех газов $$ \alpha $$ принимает одно и то же значение, равное $$ 1/273{}^{\circ }\mathrm{C}$$.



    4.4. Изохорический процесс. Закон Шарля

    Рассмотрим теперь процесс нагревания газа при постоянном объёме, или, как говорят, процесс изохорического нагревания газа. Поместим для этого газ в герметический сосуд, например, в металлический котёл с плотно завинчивающейся крышкой. Будем нагревать газ в котле, измеряя его температуру и давление. Как показывает опыт, давление газа внутри котла увеличивается с ростом температуры.

    Зависимость давления газа от температуры при неизменном объёме была экспериментально установлена французским физиком Шарлем. Согласно закону Шарля, давление $$ p$$ газа данной массы при изменении температуры $$ t\left({}^{\circ }\mathrm{C}\right)$$ изменяется по линейному закону:

    $$ p={p}_{0}(1+\gamma t)$$.

    Здесь $$ {p}_{0} -$$ давление газа при температуре $$ 0{}^{\circ }\mathrm{C}$$, $$ \gamma  -$$ термический коэффициент давления. Оказалось, что для всех газов $$ \gamma $$ принимает одно и то же значение, равное $$ 1/273{}^{\circ }\mathrm{C}$$. Заметим, что коэффициент $$ \gamma $$  равен коэффициенту $$ \alpha $$  в законе Гей-Люссака.

    4.5. Абсолютная шкала температур

    Законы Гей-Люссака и Шарля выглядят гораздо проще, если вместо температурной шкалы Цельсия $$ t\left({}^{\circ }\mathrm{C}\right)$$ ввести шкалу, предложенную английским физиком Кельвином. Связь между температурой $$ T$$ по шкале Кельвина и температурой $$ t$$ по шкале Цельсия даётся формулой:

    $$ T=t+{\displaystyle \frac{1}{\alpha }}=t+\frac{1}\gamma =t+273$$.

    Шкалу Кельвина называют абсолютной шкалой температур. На новой температурной шкале нулю градусов Цельсия соответствует температура $$ {T}_{0}=273$$ градуса (точнее, $$ \mathrm{273,15}$$). Единица измерения температуры называется кельвином и обозначается буквой $$ \mathrm{К}$$. Изменению температуры на $$ 1$$ градус Цельсия соответствует её изменению на $$ 1$$ кельвин. Комнатной температуре $$ t=20{}^{\circ }\mathrm{C}$$ по шкале Цельсия соответствует температура $$ T=293 \mathrm{К}$$  по шкале Кельвина.

    Законы Гей-Люссака и Шарля при этом примут вид:


    $$ V={V}_{0}\alpha ·\left({\displaystyle \frac{1}{\alpha }}+t\right)=\alpha {V}_{0}T$$   (закон Гей-Люссака),


    $$ p={p}_{0}\gamma \left({\displaystyle \frac{1}{\gamma }}+t\right)=\gamma {p}_{0}T$$   (закон Шарля),


    где  $$ {V}_{0}$$ и $$ {p}_{0} -$$ объём и давление газа при температуре $$ {T}_{0}$$.

    Как видно из уравнения для закона Гей-Люссака, график изобарического процесса (изобара) в координатах $$ V$$ и $$ T$$ представляет собой отрезок, лежащий на прямой линии, проходящей через начало координат. На рисунке 3 показаны две изобары при различных давлениях  $$ {p}_{1}$$ и $$ {p}_{2} ({p}_{2}>{p}_{1})$$. Давление, при котором проходит процесс, можно изменять, используя поршни разной массы. Вторая изобара проходит ниже первой, так как при одной и той же температуре бóльшему давлению соответствует меньший объём.



    В координатах $$ p$$ и $$ T$$ графики изобарических процессов представляют собой прямые линии, параллельные оси $$ T$$ (рис. 4).

    График изохорического процесса (изохора, закон Шарля) в координатах $$ p$$ и $$ T$$ представляет собой отрезок, лежащий на прямой линии, проходящей через начало координат. На рисунке 5 показаны две изохоры при различных объёмах $$ {V}_{1}$$ и $$ {V}_{2} ({V}_{2}>{V}_{1})$$. Вторая изохора проходит ниже первой, так как при одной и той же температуре бóльшему давлению соответствует меньший объём.

  • §5. Уравнение состояния газа

    5.1. Уравнение состояния идеального газа

    Равенство коэффициента теплового расширения α\alpha газа при постоянном давлении термическому коэффициенту давления γ\gamma при постоянном объёме является свойством, присущим только идеальным газам. Оно позволяет найти уравнение состояния газов.

    Пусть газ совершает тепловой процесс, в котором его сначала нагревают при постоянном объёме, а затем при постоянном давлении. График процесса изохорического нагревания в координатах $$ p,V$$ изобразится прямой `1-2^'`,  параллельной оси ординат $$ p$$  (рис. 6).


    Процесс изобарического нагревания изобразится на этом графике прямой `2^'-2`, параллельной оси абсцисс $$ V$$.

    Обозначим давление, объём и температуру газа в начале теплового процесса (точка $$ 1$$ на графике) как $$ {p}_{1},{V}_{1},{T}_{1}$$ соответственно; в конце процесса изохорического нагревания `p_2^'`, `V_2^'`, `T_2^'` (точка `2^'`) и в конце изобарического процесса $$ - {p}_{2},{V}_{2},{T}_{2}$$ (точка $$ 2$$).

    Из закона Шарля следует, что отношение давления к абсолютной температуре есть величина постоянная: $$ p/T=\alpha {p}_{0}(\gamma =\alpha )$$. Поэтому давление и температура газа в точке `2^'` связаны с давлением и температурой газа в точке `1` соотношением `p_2^'//T_2^'=p_1//T_1`, из которого находим температуру `T_2^'` в конце изохорического нагревания:

    `T_2^'=(p_2^')/p_1*T_1`.

    Аналогично, используя закон Гей-Люссака, можно показать, что температура `T_2^'` и объём газа `V_2^'` в точке `2^'` в процессе изобарического нагревания связаны с температурой $$ {T}_{2}$$ и объёмом газа $$ {V}_{2}$$ в точке $$ 2$$ соотношением `V_2^'//T_2^'=V_2//T_2`. Подставляя в это уравнение температуру `T_2^'` и учитывая равенства `V_2^'=V_1`, `p_2^'=p_2`, получаем:

    $$ {\displaystyle \frac{{V}_{1}{p}_{1}}{{p}_{2}{T}_{1}}}={\displaystyle \frac{{V}_{2}}{{T}_{2}}}$$.

    Откуда следует:

    $$ {\displaystyle \frac{{p}_{1}{V}_{1}}{{T}_{1}}}={\displaystyle \frac{{p}_{2}{V}_{2}}{{T}_{2}}}$$.                                                    (1)

    Начальное и конечное состояния газа (точки $$ 1$$ и $$ 2$$) были выбраны совершенно произвольно. Можно было бы взять в качестве начального и конечного состояний другие точки. Процесс перевода газа из состояния $$ 1$$ в состояние $$ 2$$ также можно было бы совершить по-иному, нагревая, например, газ сначала изобарически, а затем изохорически. Однако в любом случае можно показать, что параметры начального (точка $$ 1$$) и конечного (точка $$ 2$$) состояний газа всегда связаны между собой соотношением (1), или, по-другому, что в состоянии теплового равновесия для данной массы газа справедливо соотношение:

    $$ {\displaystyle \frac{pV}{T}}=\mathrm{const}$$.                                                               (2)

    Неизвестную постоянную удалось вычислить после того, как итальянским физиком Авогадро был экспериментально установлен закон, согласно которому один моль любого газа при нормальных условиях, т. е. при нормальном атмосферном давлении $$ 1$$ атм $$ (101325 \mathrm{Па})$$ и температуре $$ 0{}^{\circ }\mathrm{C} (\mathrm{273,15} \mathrm{K})$$ занимает объём $$ \mathrm{22,4} \mathrm{л}$$. Подставляя эти данные в найденное соотношение (2), для моля газа получим значение постоянной $$ R$$:

    $$ {\displaystyle \frac{pV}{T}}=R=8,31{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{K}}}$$.

    Величину $$ R$$ называют универсальной газовой постоянной.

    С учётом этого соотношения уравнение состояния для одного моля газа можно записать в виде:

    $$ pV=RT$$.                                                                               (3)

    Используя уравнение (3), нетрудно получить уравнение состояния для произвольного количества газа. Так как в состоянии теплового равновесия масса газа распределена равномерно по объёму сосуда, то $$ \nu $$ молей газа при тех же условиях занимают в $$ \nu $$ раз больший объём, чем объём одного моля. Таким образом, уравнение состояния для $$ \nu $$ молей газа может быть записано в виде:

    $$ pV=\nu RT={\displaystyle \frac{m}{M}}RT$$.                                                          (4)

    Здесь $$ m$$ и $$ M -$$ масса и молярная масса газа. Уравнение называют уравнением состояния идеального газа.

    Уравнение состояния в форме (2) было впервые записано Клапейроном, а в форме (4) – Менделеевым. Поэтому часто уравнение газового состояния называют уравнением (или законом) Менделеева – Клапейрона.

    Следует отметить, что в реальных условиях ни один из газов не подчиняется строго уравнению Менделеева – Клапейрона. Правда, отклонения от закона Менделеева – Клапейрона фактически исчезают для достаточно разреженных газов. Однако при низких температурах и больших плотностях начинаются заметные отклонения от этого закона. Этот факт учитывается при графическом описании тепловых процессов с участием идеального газа. На рисунках 3-5 графики процессов изображаются сплошными линиями, которые нельзя продолжать в область низких температур. Пунктирная линия используется только в качестве вспомогательной.

    Отклонения от закона Менделеева – Клапейрона наблюдаются и при достаточно высоких температурах (порядка тысячи или нескольких тысяч градусов) для газов из многоатомных молекул. При этих температурах начинается распад молекул на атомы (диссоциация). При ещё более высоких температурах начинается распад атомов на электроны и ионы, и любой газ перестаёт подчиняться уравнению Менделеева–Клапейрона, даже при сколь угодно малых плотностях.

    В термодинамике идеальным называют газ, строго подчиняющийся уравнению Менделеева – Клапейрона (о том, что такое идеальный газ с точки зрения молекулярно-кинетической теории, см. в разделе 9 настоящего задания).

    Из уравнения Менделеева – Клапейрона нетрудно получить зависимость между давлением $$ p$$, плотностью $$ \rho $$ и температурой $$ T$$ идеального газа:

    `rho=m/V`, `rho=(pM)/(RT)`, `p=rho/MRT`.                                                  (5)

  • §6. Закон Дальтона

    При описании природных явлений и процессов в технических устройствах приходится иметь дело не только с одним газом (кислородом, водородом и т. п.), но и со смесью нескольких газов. Воздух, являющийся смесью азота, кислорода, углекислого газа, аргона и других газов, – наиболее часто упоминаемый пример смеси газов.

    Допустим, что смесь из $$ N$$ различных газов находится в равновесном состоянии в сосуде объёмом $$ V$$ при абсолютной температуре $$ T$$. От чего зависит общее давление $$ p$$ в сосуде, заполненном смесью газов? Исследованием этого вопроса в начале XIX века занимался английский химик Джон Дальтон.

    Пронумеруем газы, входящие в состав смеси, присвоив каждому свой номер $$ i(i=\mathrm{1,2},\dots ,N)$$. Давление $$ {p}_{i}$$, которое производил бы каждый из газов, составляющих смесь, если удалить остальные газы из сосуда, называют парциальным давлением этого газа. Парциальный (от латинского слова pars – часть) – частичный, отдельный. Дальтоном экспериментально установлено, что для достаточно разреженных газов давление `p_"см"` смеси газов, химически не взаимодействующих между собой, равно сумме парциальных давлений компонентов смеси:

    $$ {p}_{\mathrm{см}}={p}_{1}+{p}_{2}+\dots +{p}_{\mathrm{N}}$$.                                                        (6)

    Сейчас этот закон называют законом Дальтона.

    В смеси идеальных газов каждый из газов ведёт себя независимо от других газов, занимает весь предоставленный объём (т. е. объём каждой компоненты смеси `V`), и его состояние описывается уравнением Менделеева-Клапейрона:

    $$ {p}_{i}V={\displaystyle \frac{{m}_{i}}{{M}_{i}}}RT={\nu }_{i}RT$$.                                                              (7)

    Здесь $$ {m}_{i}$$, $$ {M}_{i}$$ и $$ {\nu }_{i} -$$ масса, молярная масса и количество молей $$ i$$-го газа.

    Если теперь в равенство 6), выражающее закон Дальтона, подставить значения парциальных давлений из (7), то после несложных преобразований можно получить уравнение, описывающее состояние смеси идеальных газов:

    $$ {p}_{\mathrm{см}}V=\left({\displaystyle \frac{{m}_{1}}{{M}_{1}}}+{\displaystyle \frac{{m}_{2}}{{M}_{2}}}+\dots +{\displaystyle \frac{{m}_{\mathrm{N}}}{{M}_{\mathrm{N}}}}\right)RT=({\nu }_{1}+{\nu }_{2}+\dots +{\nu }_{\mathrm{N}})RT$$.                               (8)

    Если ввести понятие молярная масса смеси:

    $$ {M}_{\mathrm{см}}={\displaystyle \frac{{m}_{\mathrm{см}}}{{\nu }_{\mathrm{см}}}}={\displaystyle \frac{{m}_{1}+{m}_{2}+\dots +{m}_{\mathrm{N}}}{{\nu }_{1}+{\nu }_{2}+\dots +{\nu }_{\mathrm{N}}}}={\displaystyle \frac{{m}_{1}+{m}_{2}+\dots +{m}_{\mathrm{N}}}{{\displaystyle \frac{{m}_{1}}{{M}_{1}}}+{\displaystyle \frac{{m}_{2}}{{M}_{2}}}+\dots +{\displaystyle \frac{{m}_{\mathrm{N}}}{{M}_{\mathrm{N}}}}}}=$$ 

    $$ ={\displaystyle \frac{{\nu }_{1}{M}_{1}+{\nu }_{2}{M}_{2}+\dots +{\nu }_{\mathrm{N}}{M}_{\mathrm{N}}}{{\nu }_{1}+{\nu }_{2}+\dots +{\nu }_{\mathrm{N}}}}={\displaystyle \frac{{p}_{1}{M}_{1}+{p}_{2}{M}_{2}+\dots +{p}_{\mathrm{N}}{M}_{\mathrm{N}}}{{p}_{1}+{p}_{2}+\dots +{p}_{\mathrm{N}}}}$$,                            (9)

    то уравнение Менделеева–Клапейрона для смеси газов будет выглядеть так:

    $$ {p}_{\mathrm{см}}V={\displaystyle \frac{{m}_{\mathrm{см}}}{{M}_{\mathrm{см}}}}RT={\nu }_{\mathrm{см}}RT$$.                                                                          (10)

  • §7. Насыщенный пар. Кипение. Влажность


    Насыщенным паром

    называется пар, находящийся в динамическом равновесии со своей жидкостью: скорость испарения равна скорости конденсации. Давление и плотность насыщенного пара для данного вещества зависят только от его температуры и увеличиваются при увеличении температуры. Иными словами, давление насыщенных паров – это максимальное возможное давление пара при данной температуре.

    Условие кипения жидкости – это условие роста пузырьков насыщенного пара в жидкости. Пузырёк может расти, если давление насыщенного пара внутри него будет не меньше внешнего давления. Итак, 

    жидкость кипит при той температуре, при которой давление её насыщенных паров равно внешнему давлению. 

    Приведём полезный пример.

    Известно, что при нормальном атмосферном давлении `p_0~~10^5` Па вода кипит при `100^@"C"`. Это означает, что давление насыщенных паров воды при `100^@"C"` равно `p_0~~10^5` Па. А в горах на высоте `5` км атмосферное давление `~~0,5*10^5` Па, что соответствует давлению насыщенных паров при `80^@"C"`, и в результате вода кипит при `80^@"C"`.

    Пары воды в атмосферном воздухе обычно ненасыщенные. Абсолютной влажностью воздуха называется плотность водяных паров `rho`. Относительной влажностью воздуха называется величина 

    `varphi=p/p_"нас"`.

    Здесь `p` - парциальное давление паров воды при данной температуре в смеси воздух – пары воды, `p_"нас"` - парциальное давление насыщенных водяных паров при той же температуре. Опыт показывает, что `p_"нас"` зависит только от температуры и не зависит от плотности и состава воздуха.

    Если пар считать идеальным газом, то `p=rho/muRT`, `p_"нас"=(rho_"нас")/muRT`, где `rho` и `rho_"нас"` - плотности ненасыщенного и насыщенного водяного пара, `mu=18` г/моль. Деление одного уравнения на другое даёт `p/p_"нас"=rho/rho_"нас"`. Итак,

    `varphi=p/p_"нас"~~rho/rho_"нас"`.

    Относительная влажность показывает какую долю (процент) составляют пары воды от насыщенных, так сказать степень насыщения паров воды. Например, при относительной влажности воздуха `40%` парциальное давление паров воды `p=0,4p_"нас"`. Считается, что наиболее комфортная относительная влажность воздуха `~~60%.`


  • §8. Примеры решения задач
    Задача 1*

    Органическое соединение массой $$ m=716 \mathrm{мг}$$, имеющее формулу $$ ({\mathrm{C}}_{3}{\mathrm{H}}_{6}\mathrm{O}{)}_{n}$$, при давлении $$ p={10}^{5} \mathrm{Па}$$ и температуре $$ t=200{}^{\circ }\mathrm{C}$$ занимает в газообразном состоянии объём $$ V=243 {\mathrm{см}}^{3}$$. Найдите $$ n$$.

    Решение

    Для молярной массы $$ M$$ этого соединения имеем:

    M=3n·MC+6n·MH+n·MOM = 3n\cdot M_\mathrm C + 6n\cdot M_\mathrm H + n\cdot M_\mathrm O,

    где $$ {M}_{\mathrm{C}}=12 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}$$, $$ {M}_{\mathrm{H}}=1 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}$$  и $$ {M}_{\mathrm{O}}=16 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь} -$$ молярные массы углерода $$ \left(\mathrm{C}\right)$$, водорода $$ \left(\mathrm{H}\right)$$ и кислорода $$ \left(\mathrm{O}\right)$$, соответственно.

    Подставляя выражение для $$ M$$ в уравнение состояния идеального газа, для $$ n$$ находим:

    $$ n={\displaystyle \frac{mRT}{pV(3{M}_{\mathrm{C}}+6{M}_{\mathrm{H}}+{M}_{\mathrm{O}})}}=$$

    $$ ={\displaystyle \frac{\mathrm{0,716}·{10}^{-3} \mathrm{кг}·\mathrm{8,31}\mathrm{Д}\mathrm{ж}/(\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}·\mathrm{K})·473 \mathrm{K}}{{10}^{5} \mathrm{Па}·\mathrm{0,243}·{10}^{-3} {\mathrm{м}}^{3}·58·{10}^{-3} \mathrm{к}\mathrm{г}/\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}}}=2$$.


    Задача 2

    Бутылка, наполненная воздухом, плотно закрыта пробкой площадью сечения `S=2,5  "см"^2`. До какой температуры `t_2` следует нагреть воздух, чтобы пробка вылетела из бутылки, если максимальная сила трения, удерживающая пробку, `F=12  "Н"`? Начальное давление воздуха в бутылке и наружное давление одинаковы и равны `p=100` кПа, начальная температура `t_1=-3^@"C"`.

    Решение

    В момент начала движения пробки разность сил давления, действующих на пробку, равна максимальной силе трения

    p~S-pS=F\stackrel{~}{p}S-pS=F.

    Отсюда находим давление газа

    p~=p+FS\stackrel{~}{p}=p+\frac{F}{S}

    в бутылке в этот момент. При изохорическом нагревании давление газа прямо пропорционально абсолютной температуре (закон Шарля)

    pT1=p~T2\frac{p}{{T}_{1}}=\frac{\stackrel{~}{p}}{{T}_{2}}.

    Из приведенных соотношений приходим к ответу на вопрос задачи

    `t_2=(t_1+273)(F/(pS)+1)-273~~127^@"C"`.

    Задача 3*

    При нагревании идеального газа была получена зависимость давления от температуры, изображённая на рис. 7. Определите, что производилось во время нагревания газа: сжатие или расширение? T -T\ - абсолютная температура.


    Решение

    Для ответа на поставленный вопрос воспользуемся приёмом, основанном на вспомогательных построениях. 

    График изохорного процесса в координатах $$ p,T$$ представляет собой прямую линию, проходящую через начало координат. Угловой коэффициент этой прямой обратно пропорционально зависит от объёма.

    Проведём две изохоры, одна из которых проходит через точку $$ 1$$, вторая – через $$ 2$$ (рис. 8). Первая изохора соответствует объёму $$ {V}_{1}$$ в состоянии $$ 1$$, вторая – объёму $$ {V}_{2}$$ в состоянии $$ 2$$. Видно, что первая изохора идёт круче второй, следовательно, её угловой коэффициент больше. Это, в свою очередь, означает, что $$ {V}_{1}<{V}_{2}$$ т. е. при переходе из состояния $$ 1$$ в состояние $$ 2$$ газ расширялся.


    Задача 4

    В вертикально расположенном цилиндре с гладкими стенками сечением $$ S$$ под поршнем массой $$ m$$ находится воздух при температуре $$ {T}_{1}$$. Когда на поршень положили груз массой $$ M$$, расстояние от него до дна цилиндра уменьшилось в $$ n$$ раз. На сколько повысилась температура воздуха в цилиндре? Атмосферное давление $$ {p}_{0}$$.

    Решение

    В первой ситуации на поршень действуют две силы, направленные вертикально вниз (сила тяжести $$ mg$$ и сила давления атмосферы $$ {p}_{0}S$$), и направленная вертикально вверх сила давления со стороны воздуха под поршнем $$ {p}_{1}S$$. Из равенства нулю равнодействующей этих сил (условие механического равновесия поршня) для начального давления $$ {p}_{1}$$ воздуха находим:

    $$ {p}_{1}={p}_{0}+{\displaystyle \frac{mg}{S}}$$.

    Рассуждая аналогичным образом, для давления $$ {p}_{2}$$ воздуха во второй ситуации (на поршень положили дополнительный груз массой $$ M$$) имеем:

    $$ {p}_{2}={p}_{0}+{\displaystyle \frac{(m+M)g}{S}}$$.

    Пусть $$ {H}_{1}$$ и H2 -H_2\ - расстояния от дна цилиндра до поршня в начале и в конце опыта. Тогда для начального $$ \left({V}_{1}\right)$$ и конечного $$ \left({V}_{2}\right)$$ объёмов воздуха можно записать: V1=H1S, V2=H2SV_1 = H_1S,\ V_2 = H_2 S.

    С учётом полученных соотношений уравнения Менделеева – Клапейрона для начального и конечного состояний воздуха принимают вид:

    $$ {p}_{1}{V}_{1}=\left({p}_{0}+{\displaystyle \frac{mg}{S}}\right){H}_{1}S=\nu R{T}_{1}, {p}_{2}{V}_{2}=\left({p}_{0}+{\displaystyle \frac{(m+M)g}{S}}\right){H}_{2}S=\nu R{T}_{2}$$,

    где ν -\nu\ - число молей воздуха в цилиндре. Учитывая, что объём воздуха уменьшился в $$ n$$ раз $$ ({H}_{2}={H}_{1}/n)$$, для отношения температур воздуха находим:

    $$ {\displaystyle \frac{{T}_{1}}{{T}_{2}}}={\displaystyle \frac{\left({p}_{0}+\frac{mg}{S}\right){H}_{1}S}{\left({p}_{0}+\frac{(m+M)g}{S}\right){H}_{2}S}}={\displaystyle \frac{n\left({p}_{0}+\frac{mg}{S}\right)}{\left({p}_{0}+\frac{(m+M)g}{S}\right)}}$$.

    Теперь для изменения температуры $$ \Delta T={T}_{2}-{T}_{1}$$  получаем:

    $$ \Delta T={T}_{1}\left({\displaystyle \frac{1}{n}}-1+{\displaystyle \frac{Mg}{n({p}_{0}S+mg)}}\right)$$.

    Заметим, что воздух будет нагреваться, если выражение в скобках больше нуля.


    Задача 5

    $$ U$$-образная тонкая трубка постоянного внутреннего сечения с вертикально расположенными коленами заполняется ртутью так, что в каждом из открытых колен остаётся слой воздуха длиной L=320 ммL = 320\ \mathrm{мм} (рис. 9). Затем правое колено закрывается небольшой пробкой. Какой максимальной длины слой ртути можно долить в левое колено, чтобы она не выливалась из трубки? Опыт производится при постоянной температуре, внешнее давление составляет $$ 720$$ мм рт. ст.  (МФТИ, $$ 2000$$ г.)

    Решение

    Пусть S -S\ - площадь сечения трубки. Тогда, после того как правое колено закрыли пробкой, между пробкой и ртутью оказался заперт воздух, занимающий объём $$ {V}_{1}=SL$$ при давлении $$ {p}_{1}=720$$ мм рт. ст. Равновесное состояние этого воздуха описывается уравнением Менделеева–Клапейрона p1V1=p1SL=νRTp_1 V_1 = p_1 SL = \nu RT, где ν\nu – число молей воздуха,  T -T\ - его температура.

    При доливании в левое колено максимально возможного количества ртути оно будет заполнено ртутью полностью, т. е. уровень ртути поднялся на $$ L$$, а в правом колене уровень ртути поднимется на некоторую высоту $$ h$$. Таким образом, полная высота столбика ртути, долитой в трубку, равна $$ L+h$$.

    Ртуть в трубке находится в равновесии. Условием равновесия является равенство давлений в точках, расположенных в правом и левом коленах на одном горизонтальном уровне. Выберем уровень, проходящий на расстоянии $$ L$$ от верхнего края трубки. Давление в левом колене $$ {p}_{\mathrm{л}}={p}_{1}+{\rho }_{\mathrm{рт}}gL$$, где $$ {p}_{1}$$ – атмосферное давление на открытую поверхность ртути.

    Давление в правом колене $$ {p}_{\mathrm{п}}={p}_{2}+{\rho }_{\mathrm{рт}}gh$$, где $$ {p}_{2}$$ – давление воздуха, запертого в правом колене. Тогда условие равновесия ртути в трубке можно записать следующим образом:

    $$ {p}_{\mathrm{л}}={p}_{1}+{\rho }_{\mathrm{рт}}gL={p}_{\mathrm{п}}={p}_{2}+{\rho }_{\mathrm{рт}}gh$$.

    Новое равновесное состояние запертого в правом колене воздуха описывается уравнением:

    p2V2=p2S(L-h)=νRTp_2V_2 = p_2S(L-h) = \nu RT.

    Используя составленные соотношения, получаем квадратное уравнение для определения $$ h$$:

    p2S(L-h)=p1+ρртg(L-h)S(L-h)=p1SLp_2S(L-h) = \left(p_1 + \rho_\mathrm{рт}g(L-h)\right)S(L-h) = p_1SL,

    решая которое, находим: h=80 ммh = 80\ \mathrm{мм} (второй корень уравнения (h=1280 мм)(h = 1280\ \mathrm{мм}) не удовлетворяет условию задачи). Следовательно, в трубку можно долить слой ртути максимальной высотой L+h=400 ммL+h = 400\ \mathrm{мм}.


    Задача 6

    Горизонтально расположенный сосуд постоянного внутреннего сечения и длины $$ L$$ разделён теплонепроницаемой подвижной перегородкой (рис. 10). В одной части сосуда находится азот, в другой гелий. В первоначальном состоянии температура газов $$ 300 \mathrm{К}$$, а объём, занимаемый гелием, в два раза больше объёма азота. Затем температуру азота повышают до $$ 600 \mathrm{К}$$. На какое расстояние переместится перегородка? Толщина перегородки много меньше $$ L$$. Трением между поршнем и стенками сосуда  пренебречь.


    Решение

    Найдём начальное положение перегородки $$ {l}_{1}$$ (отсчёт ведётся от левого края сосуда (см. рис. 10):

    $$ {\displaystyle \frac{{V}_{{1}_{{\mathrm{N}}_{2}}}}{{V}_{{1}_{\mathrm{He}}}}}={\displaystyle \frac{S{l}_{1}}{S(L-{l}_{1})}}\Rightarrow {l}_{1}={\displaystyle \frac{{V}_{{1}_{{\mathrm{N}}_{2}}}/{V}_{{1}_{\mathrm{He}}}}{1+{V}_{{1}_{{\mathrm{N}}_{2}}}/{V}_{{1}_{\mathrm{He}}}}}L\Rightarrow {l}_{1}={\displaystyle \frac{1}{3}}L$$,

    где $$ {V}_{{1}_{{\mathrm{N}}_{2}}}$$ и $$ {V}_{{1}_{\mathrm{He}}}$$ – начальные объёмы азота и гелия, $$ S$$ – площадь поперечного сечения сосуда.

    Так как перегородка подвижна и теплонепроницаема, то давление в левой и правой частях сосуда будет одинаково, температура азота поднимется от $$ {T}_{1}$$ до $$ {T}_{2}$$ (по условию), а температура гелия остаётся неизменной $$ {T}_{1}$$.

    Запишем уравнения Менделеева – Клапейрона для начального и конечного состояний, и найдём конечное отношение объёмов азота и гелия ( $$ {p}_{1}$$ и $$ {p}_{2}$$ – начальные и конечные давления в сосуде, $$ {\nu }_{{\mathrm{N}}_{2}}$$ и $$ {\nu }_{\mathrm{He}}$$ – количества азота и гелия, $$ {V}_{{2}_{{\mathrm{N}}_{2}}}$$ и $$ {V}_{{2}_{\mathrm{He}}}$$ – конечные объёмы азота и гелия).

    В начальном состоянии:

    $$ \left\{\begin{array}{lc}{p}_{1}{V}_{{1}_{{\mathrm{N}}_{2}}}& ={\nu }_{{\mathrm{N}}_{2}}R{T}_{1}\\ {p}_{1}{V}_{{1}_{\mathrm{He}}}& ={\nu }_{\mathrm{He}}R{T}_{1}\end{array}\right.\Rightarrow {\displaystyle \frac{{{\nu }_{\mathrm{N}}}_{2}}{{\nu }_{\mathrm{He}}}}={\displaystyle \frac{{V}_{{1}_{{\mathrm{N}}_{2}}}}{{V}_{{1}_{\mathrm{He}}}}}\Rightarrow {\displaystyle \frac{{\nu }_{{\mathrm{N}}_{2}}}{{\nu }_{\mathrm{He}}}}={\displaystyle \frac{1}{2}}$$

    В конечном состоянии:

    $$ \left\{\begin{array}{lc}{p}_{2}{V}_{{2}_{{\mathrm{N}}_{2}}}& ={\nu }_{{\mathrm{N}}_{2}}R{T}_{2}\\ {p}_{2}{V}_{{2}_{\mathrm{He}}}& ={\nu }_{\mathrm{He}}R{T}_{1}\end{array}\right.\Rightarrow {\displaystyle \frac{{V}_{{1}_{{\mathrm{N}}_{2}}}}{{V}_{{1}_{\mathrm{He}}}}}={\displaystyle \frac{{\nu }_{{\mathrm{N}}_{2}}}{{\nu }_{\mathrm{He}}}}·{\displaystyle \frac{{T}_{2}}{{T}_{1}}}\Rightarrow {\displaystyle \frac{{V}_{{1}_{{\mathrm{N}}_{2}}}}{{V}_{{1}_{\mathrm{He}}}}}={\displaystyle \frac{1}{2}}·{\displaystyle \frac{600 \mathrm{К}}{300 \mathrm{К}}}=1$$.

    Конечное положение перегородки:

    $$ {l}_{2}={\displaystyle \frac{{V}_{{2}_{{\mathrm{N}}_{2}}}/{V}_{{2}_{\mathrm{He}}}}{1+{V}_{{2}_{{\mathrm{N}}_{2}}}/{V}_{{2}_{\mathrm{He}}}}}L\Rightarrow {l}_{2}={\displaystyle \frac{1}{2}}L$$,

    Смещение перегородки `Delta l`:

    `Delta l = l_2 - l_1 =1/2 L -1/3 L =1/6 L`. 

    Итак, перегородка сместится на `1/6 L`  вправо.


    Задача 7

    Воздушный шар, наполненный водородом $$ \left({\mathrm{H}}_{2}\right)$$ имеет объём $$ V=100 {\mathrm{м}}^{3}$$. Чему равна подъёмная сила шара у поверхности Земли? Давление и температура водорода и окружающего воздуха одинаковые и составляют соответственно $$ 760$$ мм рт. ст. и $$ 20{}^{\circ }\mathrm{C}$$. Оболочка шара тонкая и имеет массу $$ 9 \mathrm{кг}$$, молярная масса воздуха $$ {M}_{\mathrm{возд}}=29 \mathrm{к}\mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}$$.

    Решение

    Подъёмная сила шара равна разности силы Архимеда (выталкивающей силы), действующей на аэростат со стороны окружающего его воздуха, и силы тяжести, действующей на оболочку шара и водород внутри него: $$ {F}_{\mathrm{под}}={F}_{\mathrm{арх}}-{F}_{\mathrm{тяж}}$$.

    Для силы Архимеда имеем:

    $$ {F}_{\mathrm{арх}}={\rho }_{\mathrm{возд}}gV,$$  где  $$ {\rho }_{\mathrm{возд}}={\displaystyle \frac{p{M}_{\mathrm{возд}}}{RT}}$$.

    Здесь $$ p -$$ давление воздуха, $$ {M}_{\mathrm{возд}}$$ – его молярная масса, $$ T$$ – температура. Учитывая уравнение состояния водорода, для силы тяжести, действующей на оболочку шара и водород, получаем:

    $$ {F}_{\mathrm{тяж}}=(m+{m}_{\mathrm{вод}})g=(m+{\rho }_{\mathrm{вод}}V)g=\left(m+{\displaystyle \frac{p{M}_{\mathrm{вод}}V}{RT}}\right)g$$,

    где $$ m$$ – масса оболочки, $$ {M}_{\mathrm{вод}}$$ – молярная масса водорода. Теперь для подъёмной силы находим:

    $$ {F}_{\mathrm{под}}=\left({\displaystyle \frac{pV({M}_{\mathrm{возд}}-{M}_{\mathrm{вод}})}{RT}}-m\right)g\approx 1020 \mathrm{H}$$.


    Задача 8 

    В баллоне находится смесь газов, содержащая $$ 524 \mathrm{г}$$ ксенона, $$ 16 \mathrm{г}$$ гелия и $$ 71 \mathrm{г}$$ молекулярного хлора $$ \left({\mathrm{Cl}}_{2}\right)$$. Найти молярную массу этой смеси.

    Решение

    По определению молярной массы:

    $$ {M}_{\mathrm{смеси}}={\displaystyle \frac{{m}_{\mathrm{смеси}}}{{\nu }_{\mathrm{смеси}}}}={\displaystyle \frac{{m}_{\mathrm{Xe}}+{m}_{\mathrm{He}}+{m}_{{\mathrm{Cl}}_{2}}}{{\nu }_{\mathrm{Xe}}+{\nu }_{\mathrm{He}}+{\nu }_{{\mathrm{Cl}}_{2}}}}={\displaystyle \frac{{m}_{\mathrm{Xe}}+{m}_{\mathrm{He}}+{m}_{{\mathrm{Cl}}_{2}}}{\frac{{m}_{\mathrm{Xe}}}{{M}_{\mathrm{Xe}}}+\frac{{m}_{\mathrm{He}}}{{M}_{\mathrm{He}}}+\frac{{m}_{{\mathrm{Cl}}_{2}}}{{M}_{{\mathrm{Cl}}_{2}}}}}$$

    $$ {M}_{\mathrm{смеси}}={\displaystyle \frac{524 \mathrm{г}+16 \mathrm{г}+71 \mathrm{г}}{\frac{524 \mathrm{г}}{131 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}}+\frac{16 \mathrm{г}}{4 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}}+\frac{71 \mathrm{г}}{71 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}}}}\approx 68 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}$$.

    Задача 9

    При изотермическом сжатии `18  "г"` водяного пара при температуре `T=373  "К"` его объём уменьшился в `4` раза, а давление возросло вдвое. Найти начальный объём пара.

    Решение

    При сжатии часть газа сконденсировалась, и оставшийся пар стал насыщенным. При температуре `T=373  "К"`, т. е. `100^@"C"`, его давление `p~~10^5  "Па"`. Уравнение Менделеева – Клапейрона для начального состояния `p/2V=m/muRT`, где `mu=18` `"г"//"моль"`.

    Отсюда `V=(2mRT)/(mup)~~62*10^(-3)  "м"^3=62  "л"`.

  • §9. Молекулярно-кинетическая теория идеального газа

    9.1. Модель идеального газа в молекулярно-кинетической теории

    Законы идеальных газов, найденные опытным путём, находят довольно простое объяснение в молекулярно-кинетической теории (МКТ). Она исходит при этом из упрощённых представлений о строении газа. Это обусловлено рядом причин, в частности, неточным знанием сил взаимодействия между молекулами. Однако, как оказывается, даже такая упрощённая модель газа позволяет найти уравнение состояния, правильно описывающее его поведение.

    В молекулярно-кинетической теории принимается следующая идеализированная модель газа идеальный газ. Молекулы газа считаются твёрдыми, абсолютно упругими шариками, причём размеры молекул малы по сравнению со средним расстоянием между ними. Это означает, что собственный суммарный объём молекул значительно меньше объёма сосуда, в котором находится газ. Взаимодействие между молекулами проявляется только при непосредственном столкновении их друг с другом. Между столкновениями молекулы движутся по инерции. Движение молекул подчиняется законам механики Ньютона.

    Для нахождения уравнения состояния газа необходимо сделать ещё важное упрощающее предположение, а именно, считать движение любой молекулы газа беспорядочным, хаотичным.

    Аккуратный вывод основного уравнения молекулярно-кинетической теории идеального газа требует принимать во внимание ряд моментов, например, наличие в газе молекул, движущихся с разными по величине скоростями, столкновения молекул между собой, характер столкновения отдельной молекулы со стенкой сосуда (упругий или неупругий).  В разделе 7.3 будет рассмотрен упрощённый вариант вывода основного уравнения молекулярно-кинетической теории.

    9.2. Давление идеального газа

    Давление, которое оказывает газ на стенку сосуда, есть результат ударов молекул газа о стенку. Если бы в сосуде содержалось всего несколько молекул, то их удары следовали бы друг за другом редко и беспорядочно. Поэтому нельзя было бы говорить ни о какой регулярной силе давления, действующей на стенку. Стенка подвергалась бы отдельным практически мгновенным бесконечно малым толчкам. Если же число молекул в сосуде очень велико, то велико и число ударов их о стенку сосуда. Одновременно о стенку сосуда ударяется громадное количество молекул. Очень слабые силы отдельных ударов складываются при этом в значительную по величине и почти постоянную силу, действующую на стенку. Среднее по времени значение этой силы, отнесённое к единичной площадке, и есть давление газа, с которым имеет дело термодинамика.

    Пусть в сосуде объёма $$ V$$ находятся $$ N$$ одинаковых молекул идеального газа, а $$ {m}_{0}$$ – масса одной молекулы. В рамках молекулярно-кинетической теории показывается, что давление $$ p$$  газа определяется выражением:

    p=m0nv2¯/3p = m_0n\bar{v^2}/3,                                                                 (11)

    где $$ n=N/V$$ – концентрация молекул газа, v2¯\bar{v^2} – среднее значение квадрата скорости молекулы. Выражение (11) называют основным уравнением молекулярно-кинетической теории идеального газа.

    Заметим, что величина m0v2¯/2m_0\bar{v^2}/2 есть средняя кинетическая энергия E¯\bar{E} поступательного движения молекулы. Поэтому полученную формулу можно представить в другом виде:

    p=2nE¯/3p = 2n\bar E / 3.                                                                        (12)

    Ниже приводится один из способов вывода уравнения (11). Данный раздел при первом прочтении можно пропустить. 

    9.3* Вывод основного уравнения МКТ идеального газа

    Вычислим среднее давление газа на стенку сосуда. 

    Для простоты будем считать, что удар молекулы о стенку происходит абсолютно упруго, а сама стенка идеально гладкая и молекула после удара отражается от неё под тем же углом, под каким она падала на стенку (см. рис. 11), или, как говорят, зеркально (однако ясно, что никаких гладких стенок не существует: ведь сама стенка состоит из молекул).


    Введём систему координат, направив ось $$ OX$$ перпендикулярно стенке, а ось $$ OY$$ – вдоль стенки (см. рис. 11).

    Пронумеруем все молекулы от $$ i=1$$ до $$ i=N$$. Пусть $$ {v}_{i,x},({v}_{i,x}>0) -$$ проекция скорости $$ i$$-ой молекулы на ось $$ OX$$ до удара. При абсолютно упругом ударе о стенку проекция скорости на ось $$ OX$$ изменяет знак: $$ {v}_{i,x}^{\text{'}}=-{v}_{i,x}$$. Изменение проекции импульса молекулы на ось $$ OX$$ при столкновении молекулы со стенкой равно:

    $$ \mathrm{\Delta }{p}_{i,x}={m}_{0}{v}_{i,x}^{\text{'}}-{m}_{0}{v}_{i,x}=-2{m}_{0}{v}_{i,x}$$, 

    а передаваемый стенке импульс равен:

    $$ \mathrm{\Delta }{p}_{i,x,\mathrm{стен}}=-\mathrm{\Delta }{p}_{i,x}=2{m}_{0}{v}_{i,x}$$.

    Так как давление газа не зависит от формы сосуда, возьмём для простоты сосуд в форме куба с ребром $$ l$$. Тогда промежуток времени между двумя последовательными столкновениями молекулы с одной и той же стенкой составит $$ {\tau }_{i}=2l/{v}_{i,x}$$, а за большой интервал времени $$ t$$ она столкнётся со стенкой $$ {N}_{\mathrm{столк},i}=t/{\tau }_{i}$$ раз. Переданный стенке одной молекулой за это время импульс равен:

    `2m_0v_(i,x)*N_("столк",i)=2m_0v_(i,x)*(v_(i,x)t)/(2l)=m_0v_(i,x)^2*t/l`.

    Так как в сосуде находятся $$ N$$ молекул, то полный переданный стенке импульс всех молекул равен:

    $$ \mathrm{\Delta }{p}_{x,\sum }=\sum _{i=1}^{i=N}\Delta {p}_{i,x,\mathrm{стен}}={\displaystyle \frac{{m}_{0}t}{l}}\sum _{i=1}^{i=N}{v}_{i,x}^{2}$$.

    Среднюю силу давления на стенку можно получить, разделив полный передаваемый стенке импульс на время $$ t$$:

    `F_(x,"ср")=(Deltap_(x,sum))/t=m_0/l sum_(i=1)^(i=N) v_(i,x)^2`,

    а давление $$ p -$$ разделив эту силу на площадь стенки $$ S={l}^{2}$$:

    `p=(F_(x,"ср"))/S=m_0/l^3 sum_(i=1)^(i=N) v_(i,x)^2=m_0/V sum_(i=1)^(i=N) v_(i,x)^2`.

    Здесь учтено, что объём сосуда $$ V={l}^{3}$$. Если ввести среднее значение квадрата проекции скорости одной молекулы:

    `bar(v_x^2)=1/N sum_(i=1)^(i=N) v_(i,x)^2`,

    то для давления $$ p$$ получаем:

    $$ p={\displaystyle \frac{{m}_{0}N}{V}}\overline{{v}_{x}^{2}}$$.

    Входящую в это выражение величину $$ \overline{{v}_{x}^{2}}$$ можно выразить через среднее значение квадрата скорости молекулы. Из соотношения $$ {v}^{2}={v}_{x}^{2}+{v}_{y}^{2}+{v}_{z}^{2}$$ для средних значений имеем: $$ \overline{{v}^{2}}=\overline{{v}_{x}^{2}}+\overline{{v}_{y}^{2}}+\overline{{v}_{z}^{2}}$$. Так как движение молекул беспорядочное, то все направления движения равновероятны и средние значения квадратов проекций на любое направление должны быть равны $$ \overline{{v}_{x}^{2}}=\overline{{v}_{y}^{2}}=\overline{{v}_{z}^{2}}$$. Отсюда получаем: $$ \overline{{v}^{2}}=3\overline{{v}_{x}^{2}}$$, что позволяет записать выражение для давления в виде:

    $$ p={\displaystyle \frac{1}{3}}{\displaystyle \frac{{m}_{0}N}{V}}\overline{{v}^{2}}, \mathrm{или} p={\displaystyle \frac{1}{3}}{m}_{0}n\overline{{v}^{2}}$$,

    где $$ n=N/V$$ концентрация молекул газа.

  • §10. Молекулярно-кинетический смысл температуры

    Найдём связь между средней кинетической энергией $$ \overline{E}$$ поступательного движения молекулы газа и его температурой $$ T$$. Учитывая соотношение $$ n=N/V$$  перепишем уравнение (12) в виде:

    $$ pV=2N\overline{E}/3$$.

    Сравнивая полученное уравнение с уравнением Менделеева–Клапейрона:

    `pV=nuRT=NRT//N_"A"`,

    получаем для средней кинетической энергии $$ \overline{E}$$:

    $$ \overline{E}={\displaystyle \frac{{m}_{0}\overline{{v}^{2}}}{2}}={\displaystyle \frac{3}{2}}{\displaystyle \frac{R}{{N}_{\mathrm{A}}}}T={\displaystyle \frac{3}{2}}kT$$,

    где $$ k=\mathrm{1,38}·{10}^{-23} \mathrm{Д}\mathrm{ж}\mathrm{/}\mathrm{К}\mathrm{ }\mathrm{-}$$ постоянная Больцмана. С учётом этого соотношения выражение (12) для давления можно записать в виде:

    `p=nkT`.                                                                               (13)

    В состоянии теплового равновесия средняя кинетическая энергия поступательного движения любых молекул имеет одно и то же значение, т. е. средняя кинетическая энергия молекул обладает основным свойством температуры – в состоянии теплового равновесия она одинакова для всех молекул газов, находящихся в тепловом контакте, а также для различных молекул газовой смеси. Величину $$ \overline{E}$$ можно принять поэтому за меру температуры газа. В этом и состоит физический смысл температуры с молекулярно-кинетической точки зрения.

    Скорость хаотического (теплового) движения молекул характеризуется средней квадратичной скоростью:

    $$ {v}_{\mathrm{с}\mathrm{р}\mathrm{.}\mathrm{к}\mathrm{в}}=\sqrt{\overline{{v}^{2}}}=\sqrt{{\displaystyle \frac{3kT}{{m}_{0}}}}$$.                                        (14)

    Дополнительно хочется отметить, что:

    `barE_"полн"~kT`,

    где в $$ {\overline{E}}_{\mathrm{полн}}$$ входит средняя кинетическая энергия поступательного, вращательного, колебательного и других движений молекулы. Более того, в классической термодинамике эта пропорциональность справедлива не только для газообразных, но и для жидких и твёрдых тел и сред.

    Таким образом, ещё раз напоминаем, температура есть мера средней кинетической энергии молекул. В этом и состоит молекулярно-кинетический смысл температуры. В частности при температуре $$ T=0 \mathrm{К}$$ прекращается всякое тепловое движение молекул.

    10.1 Примеры решений
    (МКТ идеального газа)

    Задача 10

    Определить массу водорода $$ \left({\mathrm{H}}_{2}\right)$$ и концентрацию молекул, содержащихся в сосуде вместимостью $$ V=20 \mathrm{л}$$ при давлении $$ p=\mathrm{2,5}·{10}^{5} \mathrm{Па}$$ и температуре $$ t=27{}^{\circ }\mathrm{C}$$. Определите среднюю кинетическую энергию поступательного движения всех молекул водорода, а также среднюю квадратичную скорость молекул.

    Решение

    Для определения массы водорода воспользуемся уравнением состояния идеального газа:

    \[m = pVM/(RT) = 4\ \mathrm{г}\]

    Концентрацию $$ n$$ водорода найдём, воспользовавшись одним из уравнений молекулярно-кинетической теории идеального газа:

    \[p = nkT, n = p/(kT) = 6\cdot 10^{25}\ \mathrm{м}^{-3}\].

    Здесь $$ k=\mathrm{1,38}·{10}^{-23} \mathrm{Д}\mathrm{ж}\mathrm{/}\mathrm{К} -$$ постоянная Больцмана.

    Средняя квадратичная скорость молекул водорода:

    $$ {v}_{\mathrm{с}\mathrm{р}\mathrm{.}\mathrm{к}\mathrm{в}}=\sqrt{\overline{{v}^{2}}}=\sqrt{\frac{3kT}{{m}_{0}}}=\sqrt{\frac{3RT}{M}}\approx 1934 \mathrm{м}\mathrm{/}\mathrm{с}$$.

    При выводе использованы соотношения $$ R=k{N}_{\mathrm{A}}$$ и $$ M={m}_{0}{N}_{\mathrm{A}}$$, где $$ {N}_{\mathrm{A}} -$$ число Авогадро, $$ {m}_{0} -$$масса одной молекулы водорода.

    При получении значения средней кинетической энергии поступательного движения всех молекул водорода можно рассуждать следующим образом. Средняя кинетическая энергия `varepsilon` поступательного движения одной молекулы определяется выражением $$ \varepsilon =3kT/2$$. Если в сосуде находится $$ N$$ молекул, то их суммарная энергия $$ \overline{E}$$ равна $$ \overline{E}=N\varepsilon =3NkT/2$$.

    Число молекул в сосуде даётся выражением $$ N=\nu {N}_{\mathrm{A}}=(m/M){N}_{\mathrm{A}}$$. Используя это выражение, для величины $$ \overline{E}$$ имеем:

    $$ \overline{E}={\displaystyle \frac{3}{2}}NkT={\displaystyle \frac{3}{2}}·{\displaystyle \frac{m}{M}}{N}_{\mathrm{A}}kT={\displaystyle \frac{3}{2}}·{\displaystyle \frac{m}{M}}·RT={\displaystyle \frac{3}{2}}pV=7500 \mathrm{Дж}$$.

    Задача 11*

    Используя молекулярно-кинетическую теорию идеального газа, оцените площадь купола парашюта. Масса парашютиста со снаряжением $$ m=100 \mathrm{кг}$$. Скорость снижения $$ v=5 \mathrm{м}\mathrm{/}\mathrm{с}$$. Условия нормальные $$ (p={10}^{5} \mathrm{Па},T=273 \mathrm{К})$$. Молярная масса воздуха $$ {M}_{\mathrm{В}}=29 \mathrm{г}\mathrm{/}\mathrm{м}\mathrm{о}\mathrm{л}\mathrm{ь}$$.

    Решение

    Сила сопротивления воздуха, действующая на купол равна:

    $$ F={\displaystyle \frac{∆p}{∆t}}$$,

    где `Delta p` - импульс, переданный молекулами воздуха куполу за время `Delta t`.

    Задачу о столкновении молекулы воздуха с куполом парашюта можно рассматривать как известную задачу из механики об упругом столкновении лёгкого тела с массивным подвижным телом.

    Будем считать купол плоской площадкой, площадью $$ S$$, перемещающийся со скоростью $$ v$$. В таком предположении импульс, переданный куполу одной молекулой, равен $$ 2{m}_{0}v$$. За время `Delta t` на купол набежит количество молекул $$ N$$, содержащихся в объёме `V = Sv Delta t`.

    Отсюда получаем:

    $$ ∆p=N·2{m}_{0}v=2{m}_{0}vnV=2{m}_{0}vSv∆T=2{m}_{0}nS{v}^{2}∆t$$.

    Полагая $$ {m}_{0}={\displaystyle \frac{{M}_{\mathrm{В}}}{{N}_{\mathrm{A}}}}$$ и используя уравнения МКТ $$ (p=nkT,R=k·{N}_{\mathrm{A}})$$, получаем:

    $$ ∆p=2{\displaystyle \frac{{M}_{\mathrm{В}}}{{N}_{\mathrm{A}}}}·{\displaystyle \frac{p}{kT}}·S{v}^{2}∆t=2{\displaystyle \frac{p{M}_{\mathrm{В}}}{RT}}S{v}^{2}∆t$$.

    Отсюда $$ F={\displaystyle \frac{∆p}{∆t}}=2{\displaystyle \frac{p{M}_{\mathrm{В}}}{RT}}S{v}^{2}$$.   (Заметим, что $$ {\displaystyle \frac{p{M}_{\mathrm{В}}}{RT}}=\rho $$).  

    Так как купол движется равномерно, то сила сопротивления равна силе тяжести парашютиста $$ mg$$. Тогда:

    `S=(mgRT)/(2pM_"B"v^2)=`

    `=(100  "кг"*10  "м"//"с"^2*8,3  "Дж"/("моль"*"К")*273  "К")/(2*10^5  "Па"*0,029  "кг"/"моль"*(5  "м"//"с")^2)~~15,6  "м"^2`.

    Полученный в рамках данной модели результат хорошо согласуется с техническими характеристиками парашютных систем «Талка-3» – $$ 16 {\mathrm{м}}^{2}$$ и «Фламинго» – $$ 15 {\mathrm{м}}^{2}$$.

    Вопросы и задачи, отмеченные знаком *, относятся к задачам повышенной сложности.


  • 1. Внутренняя энергия

    Вещества состоят из молекул, которые непрерывно и хаотично движутся и взаимодействуют друг с другом. Вследствие движения молекулы обладают кинетической энергией, а вследствие наличия взаимодействия они обладают потенциальной энергией.

    Внутренней энергией тела

    называют сумму всех кинетических и сумму всех потенциальных энергий молекул, из которых оно состоит.

    U=Wk+Wp \boxed {U = \sum W_k + \sum W_p}  — внутренняя энергия тела.

    (1)

    Уже из определения можно увидеть, что при увеличении скоростей молекул внутренняя энергия тела увеличится. Скорости теплового движения молекул могут измениться, например, при нагревании тела (повышении температуры) или в результате неупругого столкновения (удара). Если состояние тела претерпевает изменения, но при этом конечная температура тела равна его первоначальной температуре, то средние скорости молекул и их кинетические энергии также примут первоначальные значения (независимо от потенциальной энергии).

    При растяжении (или сжатии) изменяется расстояние между молекулами, и, как следствие, изменяется потенциальная энергия взаимодействия молекул. Если газ в некотором состоянии занимает некоторый объём, то молекулы удалены друг от друга на определённое среднее расстояние. Если теперь газ расширить, а потом нагреть и сжать до начального объёма, то расстояние между молекулами вернётся к первоначальному значению, а это означает, что и потенциальные энергии молекул примут первоначальные значения. Тот же результат получится для потенциальной энергии молекул газа, если повторить эти процессы без нагревания. Кинетические энергии молекул при этом могут меняться.

    Данные примеры приводят нас к пониманию того, что внутренняя энергия тела, находящегося в состоянии термодинамического равновесия, не зависит от того, каким способом данное тело приведено в данное состояние, а определяется параметрами его состояния, например, температурой и объёмом.

  • 2. Степени свободы

    Молекулы могут участвовать в разных типах движения: поступательном (любые молекулы), вращательном (двух – и многоатомные), колебательном (двух – и многоатомные).

    Число степеней свободы

    это число независимых параметров (координат), необходимых для однозначного описания положения тела в пространстве.

    Для описания положения в пространстве одноатомной молекулы потребуется всего три координаты, что соответствует тому, что она обладает тремя степенями свободы (см. рис. 1).

    Принято обозначать число степеней свободы буквой ii. Для рассматриваемого примера i=3.i = 3. Наличие этих трёх координат фактически указывает на способность тела двигаться в трёх направлениях, или, как говорят, обладает тремя поступательными степенями свободы (рис. 1).

    Для описания положения в пространстве двухатомной молекулы потребуется учесть способность центра масс этой молекулы двигаться в трёх направлениях (три поступательные степени свободы) и способность вращаться вокруг двух осей, проходящих через центр масс (две вращательные степени свободы). Третья ось, проходящая и через центры атомов двухатомных молекул, не изменяет положения атомов, и потому не рассматривается (на рис. 2 пунктирные оси и фигурные оси).

    У трёхатомных или многоатомных молекул их было бы три.

    И последнее возможное движение — это колебания атомов относительно центра масс молекулы. Такое движение приводит к изменению расстояния dd. (на рис. 2 показано для одного атома).

    Этот тип движения атомов в молекуле «даёт о себе знать» только при температурах выше некоторой характерной температуры (для большинства молекул она составляет примерно `1000` К). При более высокой температуре есть смысл рассматривать эту одну колебательную степень свободы, а при более низкой — считать, что данная степень свободы отсутствует.

    Таким образом, для описания положения в пространстве двухатомной молекулы требуется 6 величин:

    1) три координаты центра масс (поступательные степени свободы),

    2) два угла (вращательные степени свободы) и

    3) одно расстояние dd между атомами (колебательная степень свободы).
     

    В итоге имеем                 i=6 i = 6 при высокой температуре (T>1000 К)(T>1000\;\mathrm К) и
    i=5 i = 5 при низкой температуре (T<1000 К)(T<1000\;\mathrm К).


    Число степеней свободы, подсчитываемое для расчёта энергии, отличается от выше описанного в части колебательного движения.

  • 3. Внутренняя энергия идеального газа

    В модели идеального газа потенциальная энергия взаимодействия молекул считается равной нулю. Тогда из (1) имеем

    $$ U=\sum {W}_{\mathrm{К}}$$ (2)

    В термодинамике часто пользуются принципом равнораспределения энергии по степеням свободы. Суть принципа состоит в том, что на каждую степень свободы приходится одинаковая часть общей внутренней энергии.

    Во втором задании было установлено: средняя кинетическая энергия поступательного движения молекул идеального газа равна

    $$ {\overline{E}}_{\mathrm{К}} ={\displaystyle \frac{3}{2}}kT,$$

    (3)

    где $$ k$$ – постоянная Больцмана, $$ T$$ – абсолютная температура газа.

    Число степеней свободы у одноатомных молекул равно трём: $$ i=3$$. Легко догадаться, что на каждую степень свободы для одноатомных газов будет приходиться энергия:

    $${\overline{\varepsilon }}_{K}=\frac{1}{2}kT$$ - энергия, приходящаяся на одну степень свободы

    (4)

    Тогда средняя кинетическая энергия каждой молекулы с числом степеней $$ i$$ свободы будет записываться так:

    $$ {\overline{E}}_{\mathrm{К}}=\frac{i}{2}kT$$ – средняя кинетическая энергия молекулы идеального газа. (5)


    Для всего газа с числом молекул `N` можем получить выражение для внутренней энергии:

    $$ U={\displaystyle \frac{i}{2}}kT·N={\displaystyle \frac{i}{2}}kT·{\displaystyle \frac{m}{M}}{N}_{A}={\displaystyle \frac{i}{2}}{\displaystyle \frac{m}{M}}k{N}_{A}T$$.

    Так $$ R=k{N}_{A}= \mathrm{8,31}{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{К} }}$$— универсальная газовая постоянная, то

    $$ \overline{U}={\displaystyle \frac{i}{2}}·{\displaystyle \frac{m}{M}}RT$$ — внутренняя энергия идеального газа. (6)


    Используя уравнение Менделеева – Клапейрона, выражение для внутренней энергии идеального газа можно записать так:

    $$ \overline{U}=\frac{i}{2}pV$$ — внутренняя энергия идеального газа. (7)

    Напомним, что для двухатомного газа число степеней свободы может быть

    разным:


    $$ i=7$$ при высокой температуре $$ (Т>1000 \mathrm{К})$$ и
    $$ i=5$$ при низкой температуре $$(Т< 1000\;\mathrm К).$$


    В распределении энергии по степеням свободы у молекул есть очень важная особенность: при колебательном движении на каждую колебательную степень свободы приходится энергия $$ kТ$$ (!). Это связано с тем, что при колебаниях атомов в молекуле следует учитывать не только их кинетическую энергию, но и их потенциальную энергию взаимодействия. Средние значения этих энергий равны `kT//2` каждое, что (для полной энергии) в сумме и даёт среднее значение энергии колебательного движения, равное $$ kT$$.

    Поэтому подсчёт числа степеней свободы для двухатомной молекулы газа, имеющего высокую температуру $$ (Т>1000 \mathrm{К})$$, приводит к следующему результату: $$ i={i}_{\mathrm{пост}}+{i}_{\mathrm{вращ}}+2{i}_{\mathrm{кол}}=7$$.

    Далее всегда (если нет специальной оговорки) мы будем считать, что молекулярная система жёсткая и в ней нет колебаний.

  • 4. Способы изменения внутренней энергии

    Внутреннюю энергию тела можно изменить:

    1) теплопередачей (теплопроводностью, конвекцией и излучением);

    2) совершением механической работы над телом (трение, удар, сжатие и др.).

    Энергия тела, которую оно получает или отдаёт при обмене теплом с другими телами (без совершения работы), называют количеством теплоты.

    $$ {Q}= \Delta U$$ — количество теплоты. (8)

    Рассмотрим эти процессы более подробно.

    1. Виды теплопередачи

    А)

    Теплопроводность

    явление передачи теплоты (энергии) от одной части тела (более нагретой) к другой (менее нагретой).

    Передача теплоты осуществляется в основном за счёт колебательного движения и столкновения отдельных молекул. При этом при столкновениях некоторая доля кинетической энергии молекул от одной (более нагретой) части тела передаётся молекулам другой (менее нагретой) его части. Важно заметить, что при теплопроводности само вещество не перемещается, а теплопередача всегда идёт в определённом направлении: внутренняя энергия горячего тела уменьшается, а внутренняя энергия холодного тела увеличивается.

    В твёрдых металлических телах теплопроводность осуществляется преимущественно за счёт движущихся особым образом свободных электронов (в металлах также осуществляется перенос тепла колеблющимися атомами, но их вклад сравнительно небольшой).

    Благодаря непрерывному взаимодействию соседствующих молекул, теплопроводность в твёрдых телах и жидкостях происходит заметно быстрее, чем в газах.

    Интенсивность теплопроводности между телами зависит от разности их температур, площади поверхности, через которую происходит теплопередача, а также от свойств вещества, расположенного между телами.

    В обычных условиях для расчёта количества теплоты `Q`, передаваемого через слой вещества путём теплопроводности, пользуются следующим соотношением:

    $$ Q=k\frac{S·\Delta T}{h}·t$$ — закон Фурье.  (9)
    Здесь $$ k$$ – коэффициент теплопроводности вещества слоя, 
    $$ S$$ – площадь поверхности, через которую происходит теплопередача (см. рис 3),
    $$ h$$ – толщина слоя вещества,
    $$ t$$ – время наблюдения,
    $$ \Delta T={T}_{1}-{T}_{2} $$ — разность температур между границами слоя $$ ({T}_{1}>{T}_{2})$$.

    Например, тепловая энергия уходит из комнаты через стену на улицу.

    В этом случае:

    $$ S$$ – площадь поверхности стены,

    • $$ h$$ – толщина слоя вещества, составляющего стену.
    • $$ \Delta T$$ – разность температур между комнатой $$ \left({T}_{1}\right)$$ и улицей $$ \left({T}_{2}\right)$$;

    $$ k$$ – коэффициент теплопроводности вещества стены. 

    Следует отметить, что значения коэффициентов теплопроводности различных веществ отличаются столь сильно, что некоторые вещества применяют как эффективные теплопроводники (металлы, термомастика), а другие, наоборот, как теплоизоляторы (кирпич, дерево, пенопласт).

    Б) В поле силы тяжести ещё одним механизмом теплопередачи может служить конвекция.

    Естественной конвекцией

    называют процесс перемешивания вещества, осуществляемый силой Архимеда, вследствии разности температур.

    Конвекция может быть обнаружена в газах, жидкостях или сыпучих материалах.

    Например, в кастрюле (см. рисунок 4) нагреваемая снизу вода расширяется, плотность её уменьшается. Сила Архимеда, действующая на небольшой фрагмент прогретой воды, поднимает её вверх. На поверхности прогретая вода остывает, смешиваясь с более холодной водой, испаряясь и т. п. Вследствие чего вода сжимается, становится более плотной, и тонет. Возникает конвективная ячейка.

    На практике часто встречается принудительная конвекция, осуществляемая насосами или специальными перемешивающими механизмами.

    В) Все тела, температура которых отлична от абсолютного нуля, излучают электромагнитные волны, которые переносят энергию. При комнатной температуре это в основном инфракрасное излучение. Так происходит лучистый теплообмен, или теплопередача посредством теплового излучения.

    Из этого факта вытекает, что энергией в форме излучения обмениваются практически все окружающие нас тела. Этот процесс также приводит к выравниванию температур тел, участвующих в теплообмене.

    Согласно теории равновесного теплового излучения интенсивность $$ I$$ излучения так называемого абсолютно чёрного тела пропорциональна четвёртой степени абсолютной температуры $$ T$$ тела:

    $$I=\sigma ·{T}^{4}$$ — (закон Стефана—Больцмана).  (10)

    Где  `sigma=5,67*10^(-8)` `"Вт"//"м"^2``"К"^4` - постоянная Стефана-Больцмана.

    (Подробно речь об этом пойдёт в разделе «Основы квантовой физики» в 11 классе.) 

    В замкнутой системе теплообмен должен привести к установлению теплового равновесия. Теперь понятию «замкнутой системы» можно придать более отчётливые очертания: если границы некоторой области пространства имеют очень малый коэффициент теплопроводности (граница – слой теплоизолятора) и теплопередача через него не проходит, то содержащаяся внутри области пространства энергия изменяться не может и будет сохраняться.

    2. Работа и изменение внутренней энергии.
    Работа газа при расширении и сжатии

    Для изменения внутренней энергии тела необходимо изменить кинетическую или потенциальную энергию его молекул. Этого можно добиться, не только при теплопередаче, но и деформируя тело. При упругой деформации изменяется расположение молекул или атомов внутри тела, приводящее к изменению сил взаимодействия (а значит, и потенциальной энергии взаимодействия), а при неупругой изменяются и амплитуды колебаний молекул или атомов, что изменяет кинетическую энергию молекул или атомов.

              

    При ударе молотком по свинцовой пластине молоток заметно деформирует поверхность свинца (рис. 5). Атомы поверхностных слоёв начинают двигаться быстрее, внутренняя энергия пластины увеличивается.

    Стоя на улице в морозную погоду и потирая руки, мы совершаем работу, что также приводит к увеличению внутренней энергии. Если сила трения возникла из-за взаимодействия шероховатостей, то при прохождении одной шероховатости мимо другой возникают колебания частей тела. Энергия колебаний превращается в тепло. Тот же процесс происходит и при разрывах шероховатостей.

    Если работу совершает газ, закрытый в цилиндре и поршень будет перемещаться из положения `1` в положение `2` (рис. 6), то работа равна

    $$ {A}^{\text{'}}=F·l·cos\alpha =\left(pS\right)l·1=p\left(Sl\right)=p \Delta V.$$ (11)

    Здесь $$ F$$ – сила, действующая на поршень со стороны газа,

    • $$ p$$ – давление газа,
    • $$ S$$ – площадь поверхности поршня,

    $$ \Delta V$$ – изменение объёма газа.

    В некоторых случаях для расчёта работы газа в тепловом процессе удобно воспользоваться графическим методом. Суть его можно представить следующим образом. Допустим, что газ изобарно расширяется от начального объёма $$ {V}_{1}$$ до конечного объёма $$ {V}_{2}$$. На $$ pV$$ -диаграмме график процесса представляет собой отрезок прямой линии (см. рис. 7). Сравним полученное выражение для расчёта работы $$ {A}^{\text{'}}$$ газа (см. выше) с «площадью» заштрихованного прямоугольника под графиком изобары $$ {}^{"}S{ }^{"}=p({V}_{2}-{V}_{1})$$. 

    Нетрудно убедиться, что $$ {}^{"}S{ }^{"}={A}^{\text{'}}$$, т. е. работа газа при расширении от объёма $$ {V}_{1}$$ до объёма $$ {V}_{2}$$ численно равна площади прямоугольника под графиком процесса на этом участке зависимости.

    Если же процесс является более сложным (см. рис. 8), то и в этом случае графически работу можно найти как площадь фигуры под графиком процесса `1–2`.

    Докажем это, рассмотрев переход газа из состояния 1 в состояние 2 не по кривой, а по ломаной, состоящей из $$ N$$ отрезков изохор и изобар. Работа на $$ i$$-ой изобаре (на рисунке $$ i=5$$) равна $$ {A}_{i}={p}_{i}·\Delta {V}_{i}$$. Суммируя площади под всеми изобарами, получим площадь фигуры под ломаной, которую можно приближённо считать равной работе газа при расширении:

    $$ A={p}_{1}·\Delta {V}_{1}+{p}_{2}· \Delta {V}_{2}+...+{p}_{N}· \Delta {V}_{N}$$.

    Эту работу можно вычислить точнее, если увеличить число изобар и изохор ломаной (увеличить $$ N$$ и уменьшить $$ \Delta {V}_{i}$$). Площадь под ломаной при этом возрастёт, 

    так как к площади заштрихованной фигуры добавятся новые площади. Если число изобар и изохор устремить к бесконечности так, чтобы длина отрезков любой изобары и изохоры неограниченно уменьшалась, то ломаная линия совпадёт с кривой. Это и доказывает утверждение о том, что графически работу газа можно вычислить, найдя площадь фигуры под графиком процесса. Аналогично подсчитывают работу газа при его сжатии (уменьшении объёма). Необходимо только помнить, что работа газа в этом случае отрицательна.

    При разбиении фигуры, образованной графиком процесса, изохорами и осью объёмов, на бесконечно малые элементы, изменение объёма записывается как $$ dV$$ (рис. 9). В этом случае малый элемент общей работы (элементарную работу) можно найти как $$ dA=p·dV$$, а всю работу получим суммированием всех элементарных работ на участке расширения:




    $$ A=\int dA=\underset{{V}_{0}}{\overset{{V}_{k}}{\int }}pdV$$ — работа газа.




    Работа газа численно равна площади фигуры под графиком $$ p\left(V\right)$$.




    Если идеальный газ находится в теплоизолированном сосуде (стенки сосуда не пропускают тепло), то работа внешней силы, совершённая над ним, равна изменению кинетически энергий молекул газа, т. е. равна изменению его внутренней энергии:




    $$∆U=A$$




    В рамках молекулярно-кинетической теории этот факт можно пояснить следующим образом. При столкновении молекулы с движущимся навстречу ей массивным поршнем перпендикулярная к поршню составляющая скорости молекулы увеличится на удвоенную скорость поршня.

  • 5. Первый закон термодинамики

    Обобщая полученные результаты рассмотрений способов изменений внутренней энергии, можем записать:

     ΔU=Q+A \boxed { ΔU = Q + A }  — первый закон термодинамики.

    По сути, мы видим закон сохранения энергии, записанный для тепловых процессов, но это и есть первый закон термодинамики.

    Изменение внутренней энергии термодинамической системы равно сумме полученного  количества теплоты и работы, совершённой над ней окружающими телами.

    Можно проиллюстрировать первый закон термодинамики и на другом примере: Если газ заперт в легком цилиндре под поршнем (рис. 10), а цилиндру сообщить количество теплоты QQ, то газ нагреется, увеличив внутреннюю энергию, (теплоёмкостью цилиндра пренебрегаем), его давление увеличится, и он совершит работу над окружающими телами А'А^'.

    Q= ΔU+A' \boxed { Q = ΔU + A^' }  — первый закон термодинамики.

    Количество теплоты, переданное термодинамической системе, расходуется на изменение внутренней энергии системы и на совершение работы системой над окружающими телами.

    В последних формулах встретились работы AA и A'A^'. Напомним, что

    • A'A^' – работа термодинамической системы над окружающими телами.

    AA – работа окружающих тел над термодинамической системой.

    При равномерном движении поршня сила, действующая на поршень со стороны газа, расположенного внутри цилиндра, равна по модулю и противоположна по направлению силе, действующей на газ со стороны поршня.

    Очевидно, что

    A=-A' \boxed { A = - A^' }

    Работа окружающих тел над системой равна и противоположна по знаку работе системы над окружающими телами.

    Первый закон термодинамики имеет одно важное следствие:

    Невозможно создать вечный двигатель первого рода.

    Т. е. невозможно создать двигатель, который непрерывно и бесконечно долго совершал бы работу без потребления энергии из окружающей среды. И действительно: если Q=0 Q = 0 , то A'=-ΔU  A^' = - ΔU , следовательно, система может совершить вполне конечную работу, не превосходящую запаса внутренней энергии системы.

    Коротко остановимся на терминологии, используемой при описании тепловых процессов.

    Термодинамический процесс называется обратимым, если при совершении его в прямом, а потом в обратном направлении все тела, включая саму систему, вернутся в исходное состояние.

    Необходимым и достаточным условием обратимости процесса является равновесность его промежуточных состояний.

    Употребляются также термины: равновесный, или квазистатический процессы. Равновесные процессы можно описать графически, неравновесный – невозможно.

    Реальные процессы сопровождаются теплообменом, диффузией, трением (необратимыми процессами), следовательно, большинство реальных процессов являются необратимыми.

    Круговым процессом (циклом) называют термодинамический процесс, в результате совершения которого система возвращается в исходное состояние. Равновесный круговой процесс можно изобразить графически, при этом график процесса представляет собой замкнутую линию.

    В прямом круговом процессе система за цикл совершает положительную работу (см. рис. 11 слева).

    В обратном круговом процессе система за цикл совершает отрицательную работу (см. рис. 11 справа).

  • 6. Теплоёмкость

    Перевод термодинамической системы (например, порции идеального газа) из состояния `1` в состояние `2` можно осуществить разными способами. На рис. 12 показаны графики двух возможных процессов (`1-"а"-2` и `1-"в"-2`), позволяющих осуществить такой перевод. Изменение внутренней энергии системы в том и в другом случае одинаково (оно определяется положениями точек `1` и `2` на -диаграмме), а работа, совершённая системой над окружающими телами, различна (площадь фигур под графиками процессов `1-"а"-2` и `1-"в"-2` разная, площадь под графиком процесса `1-"в"-2` больше).


    Следовательно, и количество теплоты, затраченное на перевод системы из состояния `1` в `2` ( $$ Q=\Delta U+{A}^{\text{'}}$$ ), будет разным.

    Теплоёмкостью $$ C$$ термодинамической системы (тела) называют отношение бесконечно малого количества теплоты $$ \Delta Q$$, переданного системе, к изменению $$ \Delta T$$ его температуры, вызванного этим количеством теплоты.

    $$ C={\displaystyle \frac{\Delta Q}{\Delta T}}$$ — теплоёмкость тела (системы).

    Единицей измерения этой величины будет $$ \left[C\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{К}}}$$.



    Численное значение теплоёмкости тела показывает, какое количество теплоты потребуется для изменения температуры всего тела на `1` градус по шкале Цельсия (Кельвина).


    При расчётах чаще пользуются удельной теплоёмкостью (теплоёмкостью `1` кг вещества).

    Удельной теплоёмкостью вещества

    называют отношение теплоёмкости тела (системы) к массе этого тела (системы):

    $$ {c}_{\mathrm{уд}}={\displaystyle \frac{C}{m}}={\displaystyle \frac{\Delta Q}{m· \Delta T}}$$ — удельная теплоёмкость тела (системы).  (1)


    Единицей измерения этой величины будет $$ \left[c\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{кг}·\mathrm{К}}}$$.


    Молярной теплоёмкостью тела (системы)

     называют отношение теплоёмкости тела (системы) к количеству вещества в этом теле (системе):


    $$ {c}_{\mathrm{мол}}={\displaystyle \frac{C}{\nu }}={\displaystyle \frac{\Delta Q}{ \Delta T·\nu }}$$ — молярная теплоёмкость тела (системы).  (2)


    Единицей измерения этой величины будет $$ \left[{c}_{\mathrm{мол}}\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}$$.


    Получим соотношение между удельной и молярной теплоёмкостями:

    $$ {c}_{\mathrm{мол}}={\displaystyle \frac{Q}{ \Delta T·\frac{m}{M}}}={\displaystyle \frac{Q·M}{ \Delta T·m}}={c}_{\mathrm{уд}}·M$$  — соотношение между молярной и удельной теплоёмкостями (3)



    Теперь найдём молярную теплоёмкость идеального газа при изобарном и при изохорном процессах.


    При изобарном процессе присутствуют и $$ \Delta U$$, и $$ {A}^{\text{'}}$$, следовательно:


    $$ {c}_{p}={\displaystyle \frac{Q}{\nu · \Delta T}}={\displaystyle \frac{\Delta U+A\text{'}}{\nu · \Delta T}}={\displaystyle \frac{\Delta U}{\nu  \Delta T}}+{\displaystyle \frac{A\text{'}}{\nu  \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu  \Delta T}}+{\displaystyle \frac{\nu R \Delta T}{\nu  \Delta T}}={\displaystyle \frac{iR}{2}}+R=R{\displaystyle \frac{i+2}{2}}$$,

    $${c}_{p}=R{\displaystyle \frac{i+2}{2}}$$ — молярная теплоёмкость газа при изобарном процессе.


    При изохорном процессе работа не совершается, $$ {A}^{\text{'}}=0$$, следовательно:


    $$ {c}_{V}={\displaystyle \frac{Q}{\nu  \Delta T}}={\displaystyle \frac{\Delta U+{A}^{\text{'}}}{\nu  \Delta T}}={\displaystyle \frac{\Delta U}{\nu  \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu  \Delta T}}={\displaystyle \frac{iR}{2}}$$

    $$ {c}_{V}=R{\displaystyle \frac{i}{2}}$$ — молярная теплоёмкость газа при изохорном процессе.


    Соотношение между $$ {c}_{V}$$ и $$ {c}_{р}$$ можно записать в двух формах:

    1) $$ {c}_{p}={c}_{V}+R$$ — закон Майера, и

    2) $$ \gamma ={\displaystyle \frac{{c}_{p}}{{c}_{V}}}$$ — коэффициент Пуассона. 



    Т. к. мы уже знаем, чему равно число степеней свободы у разных молекул, то можем вычислить и значения $$ {с}_{р}$$ и $$ \gamma $$:


     

    формула

    Одноатомные `(i = 3)`

    Двухатомные  `(i = 5)`

    `c_p`

     `R((i+2)/2)`

     `5/2 R`

    `20,775  "Дж"/("моль"*"К")` `7/2 R` `29,085  "Дж"/("моль"*"К")`

    `gamma`

    `(i+2)/i`

    `5/3` 

    `1,66667`

    `7/5` 

    `1,4`


    Воздух представляет собой смесь газов, преимущественно двухатомных азота и кислорода, потому для него эксперименты дают значение $$ \gamma  \approx  \mathrm{1,4}$$.


    Для твёрдых тел теплоёмкости $$ {с}_{р}$$ и $$ {c}_{V}$$ будут почти одинаковыми. Это можно показать следующим образом. По определению $$ C={\displaystyle \frac{\Delta Q}{ \Delta T}}$$, но $$  \Delta Q= \Delta U+p\Delta V$$, тогда

    $$ {C}_{p}={\displaystyle \frac{\Delta U+p\Delta V}{ \Delta T}}={\displaystyle \frac{\Delta U}{ \Delta T}}+{\displaystyle \frac{p\Delta V}{ \Delta T}}={C}_{V}+{\displaystyle \frac{p\Delta V}{ \Delta T}}$$.


    При нагревании твёрдых или жидких тел изменение объёма составляет около $$ {10}^{-6}$$ первоначального объёма, поэтому вторым слагаемым можно пренебречь по сравнению с первым, что и позволяет говорить о равенстве $$ {c}_{p}={c}_{V}$$. 


    Для газов $$ \frac{ \Delta V}{V}$$ на два порядка больше, чем для твёрдых или жидких тел, потому пренебрегать вторым слагаемым нельзя, более того, оно будет составлять заметную долю теплоёмкости $$ {c}_{p}$$.

  • 7. Адиабатный процесс
    Адиабатным процессом

    называют процесс изменения термодинамического состояния, происходящий без теплообмена с окружающей средой.

    Какой процесс можно было бы считать адиабатным? Вопрос не столь простой. Условием адиабатности можно считать следующее условие: с одной стороны — процесс должен быть очень быстрым, чтобы за время процесса не успел произойти теплообмен, а с другой стороны — он должен быть медленным, чтобы промежуточные состояния были обратимыми (квазистатичными).

    Процесс без теплообмена не является адиабатным, если он протекает настолько быстро, что промежуточные состояния не являются квазистатическими (обратимыми)!!!

    Если в цилиндре поршень сжимает газ, то в каждый момент времени давление и температура газа должны быть одинаковыми по всему объёму. Для осуществления этого требования требуется некоторое время, называемое временем релаксации. Иначе поршень будет «сгребать» перед собой «сугроб» из молекул.

    Первый закон термодинамики для адиабатного процесса будет иметь вид:

     ΔU+A'=0 ΔU + A^' = 0 , или  ΔU=-A' ΔU = - A^' , или  ΔU=A ΔU = A , где A=-A' A = - A^' .

    Если работа, совершаемая над газом внешними телами, будет положительной (отрицательной), то изменение внутренней энергии тоже будет положительным (отрицательным), следовательно, газ нагревается (остывает).

    Пусть из некоторого одинакового начального состояния начинают расширяться две одинаковые порции газа. Одна порция расширяется изотермически, другая адиабатно. При увеличении объёмов газов на некоторую величину изотермический процесс приведёт к снижению давления только потому, что уменьшится концентрация молекул.

    В адиабатном же расширении газ уменьшает внутреннюю энергию и остывает. Давление при этом уменьшится за счёт уменьшения концентрации так же, как в и изотермическом процессе, но при этом давление ещё дополнительно уменьшится из-за уменьшения температуры. Поэтому давление в адиабатном процессе падает быстрее, чем в изотермическом процессе. Данный факт означает, что график адиабатного процесса в координатной плоскости `pV` будет пересекать график изотермического процесса. На качественном уровне мы уже приходим к выводу, что график адиабаты круче изотермы (рис. 13).

    Уравнение, отображающее изменения термодинамических параметров при адиабатном квазистатическом процессе, называют уравнением Пуассона. Не задаваясь целью рассмотрения вывода уравнения, запишем его в готовом виде в различных формах.

    pVγ=K=const\boxed{pV^\gamma=K=\mathrm{const}} — уравнение Пуассона.

    TVγ-1=const\boxed{TV^{\gamma-1}=\mathrm{const}} — уравнение Пуассона.

    Tγpγ-1=const\boxed{\dfrac{T^\gamma}{p^{\gamma-1}}=\mathrm{const}} — уравнение Пуассона.



  • 8. Тепловые машины
    Тепловыми машинами

    называют такие термодинамические системы, которые периодически совершают прямой круговой цикл. 

    При совершении такого кругового процесса внутренняя энергия идеального газа, потраченная нагревателем на его проведение, лишь частично превращается в механическую работу.

    То, что в работу превращается только часть внутренней энергии, видно уже из того, что положительная работа — это площадь фигуры, ограниченная графиками процессов, составляющих этот цикл. Площадь фигуры под циклом заметно больше, но её невозможно потратить полностью.

    Для работы такой машины необходимо иметь в наличии более нагретое тело (далее называемое «нагревателем») с температурой `T_2` и менее нагретое тело (далее называемое «холодильником») с температурой `T_1`. Иначе получить положительную работу за цикл не удастся.

    Вещество, производящее работу в тепловых машинах, называется рабочим телом. В качестве рабочего тела могут быть использованы различные тела, но в теоретическом рассмотрении мы будем считать, что рабочим телом такой машины является идеальный газ.

    Идеальная тепловая машина построена только на обратимых процессах, и цикл такой машины состоит из чередующихся изотермических и адиабатных процессов (рис. 14). Такой цикл предложил использовать для тепловых машин итальянец С. Карно, потому называют циклом Карно.

    Рассмотрим потактно работу такой машины.


  • 9. Цикл Карно
    1-й такт

    Изотермическое расширение: T=T2=constT=T_2=\mathrm{const}.

    Пусть газ находится в цилиндре под поршнем при температуре Т2Т_2, и цилиндр помещаем на нагреватель с температурой Т2Т_2. Газ изотермически расширяется от объёма V1V_1 до объёма V2V_2 (рис. 15). Первый закон термодинамики для данного процесса принимает вид: Q2=A1'Q_2=A_1^', тем самым находим работу в этом процессе. Так же при изотермическом процессе работа может быть найдена как площадь под графиком процесса, и равна (формулу приводим без вывода):

    A1'=νRT2lnV2V1A_1^'=\nu RT_2\ln\dfrac{V_2}{V_1}.


    2-й такт

    Адиабатное расширение: Q=0Q = 0.

    Удалим цилиндр с поршнем с нагревателя. Тем самым теплоизолируем его. Предоставим возможность газу расшириться адиабатно на столько, что его температура понизится от начальной Т2Т_2 до конечной Т1Т_1 (рис. 16). Первый закон термодинамики для данного процесса принимает вид:

     ΔU23=-A2'\;\Delta U_{23}=-A_2^',

    тем самым находим работу в этом процессе. При адиабатном процессе работа может быть найдена как:

    A2'=-i2νR(TK-TH)=-i2νR(T1-T2)A_2^'=-\dfrac i2\nu R(T_K-T_H)=-\dfrac i2\nu R(T_1-T_2).

    3-й такт

    Изотермическое сжатие: T=T1=constT=T_1=\mathrm{const}.

    Поместим цилиндр с поршнем на холодильник с температурой Т1Т_1. Далее сжимаем газ от объёма V3V_3 до объёма V4V_4 при постоянной температуре (рис. 17). При этом часть внутренней энергии будет передаваться от рабочего тела (газа) к холодильнику (теряется газом).

    Первый закон термодинамики для данного процесса принимает вид:

    -Q1=A3'-Q_1=A_3^',

    тем самым находим работу в этом процессе. Также известно, что при изотермическом процессе работа может быть найдена как площадь под графиком процесса, и равна:

    A3'=νRT1lnV4V3A_3^'=\nu RT_1\ln\dfrac{V_4}{V_3}.


    4-й такт

    Адиабатное сжатие: Q=0Q = 0.

    Удалим цилиндр с поршнем с холодильника. Тем самым теплоизолируем его. Сожмём газ адиабатно на столько, что его температура повысится от начальной Т1Т_1 до конечной Т2Т_2 (рис. 18). Первый закон термодинамики для данного процесса принимает вид:

     ΔU41=-A4'\;\Delta U_{41}=-A_4^',

    тем самым находим работу в этом процессе. При адиабатном процессе работа может быть найдена как:

    A4'=-i2νR(TK-TH)=-i2νR(T2-T1)A_4^'=-\dfrac i2\nu R(T_K-T_H)=-\dfrac i2\nu R(T_2-T_1).

    Далее цикл за циклом идёт повторение процессов.



  • 10. КПД тепловых машин

    За каждый прямой цикл система совершает работу, которую можно назвать полезной и которую можно найти как алгебраическую сумму всех работ на каждом такте:

    $$ {A}_{\mathrm{полезн}}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}+{A}_{3}^{\text{'}}+{A}_{4}^{\text{'}}={Q}_{2}-{\displaystyle \frac{i}{2}}\nu R({T}_{1}-{T}_{2})-{Q}_{1}-{\displaystyle \frac{i}{2}}\nu R({T}_{2}-{T}_{1})=$$

    $$ ={Q}_{2}-{Q}_{1}$$.

    Тратится же энергия (подводится к рабочему телу) только на первом такте в количестве $$ {Q}_{2}$$ (затраты на четвёртом такте полностью скомпенсированы положительной работой второго такта).


    цикл Карно

    Теперь имеем в наличии все данные для нахождения КПД тепловой машины, работающей по циклу Карно:

    $$ \eta ={\displaystyle \frac{{Q}_{\mathrm{полезн}}}{{Q}_{\mathrm{затр}}}}={\displaystyle \frac{{A}_{\mathrm{полезн}}^{\text{'}}}{{Q}_{\mathrm{затр}}}}={\displaystyle \frac{{Q}_{2}-{Q}_{1}}{{Q}_{2}}}=1-{\displaystyle \frac{{Q}_{1}}{{Q}_{2}}}$$,   или   $$ \eta =1-{\displaystyle \frac{{T}_{1}}{{T}_{2}}}$$.

    Вывод

    КПД идеальных тепловых машин, состоящих из обратимых процессов, с данными температурами нагревателя и холодильника, находится по формулам:

    $$ \eta =1-{\displaystyle \frac{{Q}_{1}}{{Q}_{2}}}$$ — максимальный КПД тепловых машин.

    Можно доказать, что КПД может быть найден и по другой формуле:

    $$ \eta =1-{\displaystyle \frac{{T}_{1}}{{T}_{2}}}$$ — максимальный КПД тепловых машин с циклом Карно.

    Сади Карно доказал, что тепловая машина с таким циклом имеет максимально возможный КПД.

    Цикл Отто

    Мы уже говорили о том, что цикл Карно позволяет получить максимальный из всех возможных КПД. В практической деятельности часто создаются машины, работа которых не нацелена на получение максимального КПД. Одним из таких примеров может служить цикл Отто, по которому работает бензиновый двигатель внутреннего сгорания (ДВС). На схеме показаны основные элементы двигателя и характерные точки положений поршня (рис. 19).

    работа ДВС по циклу Отто

    Теперь рассмотрим более подробно работу ДВС по циклу Отто. В идеале он должен выглядеть так: 

    А) Участок $$ АВ$$ (см. рис. 20) соответствует второй части такта выпуска, где поршень поднимается от нижней до верхней мёртвой точки и выталкивает через открытый выпускной клапан остатки отработанных газов в атмосферу при атмосферном же давлении (см. рис. 19).

    Б) На участке $$ ВС$$ (см. рис. 20) (такт впуск) поршень совершает обратное движение к нижней мёртвой точке, но при этом клапан выпускной закрывается, впускной клапан открывается, и рабочая смесь воздуха и бензина поступает (втягивается при атмосферном давлении) в камеру сгорания.

    В) На участке $$ CD$$ поршень вновь поднимается к верхней мёртвой точке и, при закрытых клапанах, сжимает рабочую смесь (такт сжатие). Сжатие идёт так быстро, что теплообмен практически не происходит, и процесс можно принять как адиабатный.

    Г) В точке $$ D$$ на свечу зажигания подают высокое напряжение, рабочая смесь практически мгновенно сгорает, и давление возрастает в несколько раз при постоянном объёме.

    Д) Далее на участке $$ EF$$ газ (отработанная смесь) совершает работу (такт рабочий ход). Процесс опять в первом приближении можно считать адиабатным, а клапаны на протяжении такта закрыты.

    Е) Последним процессом будет расширение газа при открытии выпускного клапана (первая часть такта выпуска). Газ выходит лишь частично, давление падает до атмосферного. В действительности процесс сжатия и последующего возрастания давления после сгорания идёт сложнее, да и такт выпуска тоже идёт сложнее (показано пунктирной линией, и соответствует индикаторной диаграмме). Затем повторяются все выше перечисленные процессы.

    Эксплуатация тепловых машин сопряжена с рядом факторов:

    1. КПД реальных тепловых машин меньше, чем КПД машин, работающих по циклу Карно, но достигает `40%` и более (для дизельных двигателей). Этот коэффициент можно повышать разными способами: добавлением присадок в топливо для более полного сгорания, уменьшением трения в узлах машины, совершенствованием систем охлаждения и зажигания.

    2. Тепловые машины являются источниками загрязнения окружающей среды: выхлопные газы (отработанная рабочая смесь) содержат много ядовитых (канцерогенных) веществ и веществ, из которых образуются канцерогены.

    3. Однако в значительно большей степени вредоносными для экологии являются не сами тепловые машины, а сопутствующие (обслуживающие) производства: топливная промышленность (добыча, транспортировка, переработка и вновь транспортировка топлива), производство и утилизация ГСМ, сеть Станций Технического Обслуживания, автодорожное строительство и содержании дорог. Каждая из названных категорий представляет собой сложную структуру, агрессивно воздействующую на природную среду.

    Далеко не каждый человек осознал значение его простых действий (или бездействий) в развитии биосферы, техносферы и ноосферы.

  • 10. Холодильные машины. Тепловой насос
    Холодильными машинами

    называют термодинамические системы, которые периодически совершают обратный круговой процесс и служат для передачи количества теплоты от менее нагретого тела к более нагретому, используя для этого работу окружающих тел над рабочим телом.

    Они могут быть использованы для поддержания в некотором объёме камеры машины более низкой температуры, чем снаружи.



    Наиболее эффективным круговым процессом опять можно выбрать цикл Карно, но теперь он должен совершаться в обратном направлении (см. рис. 21).


    Пусть вновь более нагретое тело имеет температуру Т2Т_2 (атмосфера), а менее нагретое Т1Т_1 (морозильная камера). Именно в нём и нужно поддерживать более низкую температуру, периодически отбирая у него часть внутренней энергии. Отобранную энергию нужно передавать более нагретому телу, т. е. окружающей среде.

    Aзатрач=-Aза цикл'=Q2-Q1A_\mathrm{затрач}=-A_{\mathrm{за}\;\mathrm{цикл}}^'=Q_2-Q_1.


    Полезным действием в таком круговом процессе будет передача теплоты в первом процессе от охлаждаемого тела к рабочему телу Q1Q_1.

    Эффективность такой теплопередачи характеризует холодильный коэффициент:

    холодильный коэффициент

    η=Q1Q2-Q1\boxed{\eta=\dfrac{Q_1}{Q_2-Q_1}}— холодильный коэффициент,

    или       

    η=T1T2-T1\boxed{\eta=\dfrac{T_1}{T_2-T_1}}— холодильный коэффициент для цикла Карно.


    Если применить холодильник (как агрегат) для обогрева помещения, то для этого будет необходимо:

    1) количество теплоты Q2Q_2, ранее передаваемое в окружающую среду, передавать теперь в обогреваемое помещение и

    2) забирать теплоту не у морозильной камеры, а у окружающей среды (атмосферы). Такой агрегат называют тепловым насосом. Теперь полезным окажется именно Q2Q_2, а затраченным вновь Q2-Q1 Q_2 - Q_1 .

    По аналогии с холодильным коэффициентом, теперь уже отопительный коэффициент можно записать в виде:

    отопительный коэффициент

    η=Q2Q2-Q1\boxed{\eta=\dfrac{Q_2}{Q_2-Q_1}} — отопительный коэффициент, или


    η=T2T2-T1\boxed{\eta=\dfrac{T_2}{T_2-T_1}} — отопительный коэффициент для цикла Карно.


    Нетрудно догадаться, что полученные коэффициенты могут оказаться больше единицы, т. е. больше `100%`. Это вполне нормально. Наибольшее значение коэффициента будет тогда, когда температура в помещении мало отличается от температуры улицы (или температура морозильной камеры близка к комнатной). Для отопительного коэффициента значения лежат в интервале от `2` до `12`. Это означает, что в комнату будет передано в `2-:12` раз больше теплоты, чем затрачено электрической энергии. Препятствием к широкому применению таких агрегатов является дороговизна их изготовления.



  • Примеры решения задач
    задача 1
    Циклический тепловой процесс состоит из изохоры, изобары, снова изохоры и ещё одной изобары (см. рис. $$ 22$$). (Считать известными величины, указанные на рисунке)

    1) На каких участках процесса газ получает теплоту, а на каких отдаёт?

    2) Чему равно изменение внутренней энергии в конце цикла?

    3) Какую работу совершает газ за цикл?

    Решение

    1) Для ответа на первый вопрос задачи необходимо определить знак количества теплоты для каждого участка цикла.

    Процесс $$ 1–2$$ – изохорный процесс, идущий с увеличением давления. В этом процессе внутренняя энергия газа увеличивается:

    $$ $$ $$ \Delta {U}_{1-2}={\displaystyle \frac{i}{2}}{V}_{12}({p}_{23}-{p}_{14})>0$$ $$ $$

    (здесь и далее двойной индекс означает равенство данной величины в двух состояниях (двух точках на диаграмме) $$ {V}_{12}={V}_{1}={V}_{2}$$ или $$ {p}_{23}={p}_{2}={p}_{3}$$), а работа газа равна нулю: $$ {A}_{1-2}=0$$, т. к. объём газа не изменяется. Следовательно, на изохоре $$ 1–2$$ газ получает теплоту: $$ \Delta {Q}_{1-2}=(\Delta {U}_{1-2}+{A}_{1-2})>0$$.

    Процесс $$ 2–3$$ изобарный, идущий с увеличением объёма. В этом процессе внутренняя энергия газа увеличивается: $$ \Delta {U}_{1-2}={\displaystyle \frac{i}{2}}{p}_{2-3}({V}_{34}-{V}_{12})>0$$, а работа газа при увеличении объёма положительна: $$ {A}_{2-3}={p}_{23}({V}_{34}-{V}_{12})>0$$. Следовательно, на изобаре $$ 2–3$$ газ получает теплоту:  

    $$ \Delta {Q}_{2-3}=(\Delta {U}_{2-3}+{A}_{2-3})>0$$.

    Процесс $$ 3–4$$ – изохорный процесс, идущий с уменьшением давления.

    В этом процессе внутренняя энергия газа уменьшается:

    `DeltaU_(1-2)=i/2 V_(34)(p_(14)-p_(23))<0`, а работа газа равна нулю: $$ {A}_{3-4}=0$$, т. к. объём газа не изменяется. Следовательно, на изохоре $$ 3–4$$ газ отдаёт теплоту: $$ΔQ_{3-4} < 0$$.

    Процесс $$ 4–1$$ изобарный, идущий с уменьшением объёма. В этом процессе внутренняя энергия газа уменьшается: `DeltaU_(1-2)=i/2 p_(14)(V_(12)-V_(34)<0`, а работа газа при уменьшении объёма отрицательна: $$ {A}_{4-1}={p}_{14}({V}_{12}-{V}_{34})$$. Следовательно, на изобаре $$ 4–1$$ газ отдаёт теплоту: $$ΔQ_{4-1} = (ΔU_{4-1} + A_{4-1}) < 0 $$.

    2) Второй вопрос требует от нас анализа итогового изменения внутренней энергии. Так как цикл замкнутый, то термодинамическая система возвращается в исходное состояние, следовательно, внутренняя энергия не изменяется (внутренняя энергия, являясь функцией состояния, определяется только температурой. Температура же после совершения замкнутого цикла примет первоначальное значение). Следовательно,

    $$ \Delta {U}_{1-2-3-4-1}=0$$.

    3) Работа за цикл равна сумме работ в отдельных процессах:

    $$ {A}_{1-2-3-4-1}={A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1}={A}_{2-3}+{A}_{4-1}=$$

    $$ ={p}_{23}({V}_{34}-{V}_{12})+{p}_{14}({V}_{12}-{V}_{34})=({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})$$.

    На $$ pV$$-диаграмме это есть площадь фигуры, ограниченной графиками процессов, составляющих цикл.

    Для нахождения работы за цикл можно складывать не работы, а количества теплоты, потраченные в отдельных процессах цикла. Докажем это:

    $$ {A}_{1-2-3-4-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-4}+ \Delta {Q}_{4-1}=$$

    $$ =(\Delta {U}_{1-2}+{A}_{1-2})+(\Delta {U}_{2-3}+{A}_{2-3})+ (\Delta {U}_{3-4}+{A}_{3-4})+ (\Delta {U}_{4-1}+{A}_{4-1}=$$

    $$ =(\Delta {U}_{1-2}+ \Delta {U}_{2-3}+ \Delta {U}_{3-4}+ \Delta {U}_{4-1})+({A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1})=$$

    $$ ={A}_{1-2}+{A}_{2-3}+{A}_{3-4}+{A}_{4-1}$$. 

    Здесь использован тот факт, что для цикла изменение внутренней энергии системы равно нулю:

    $$ \Delta {U}_{1-2}+ \Delta {U}_{2-3}+ \Delta {U}_{3-4}+ \Delta {U}_{4-1}=  \Delta {U}_{1-2-3-4-1}=0$$ .

    Если процесс не круговой (система не возвращается в исходное состояние), то $$ \sum {U}_{i-k} \ne 0$$ и такой способ расчёта работы не применим.

    задача 2

    Для циклического процесса, который состоит из изохоры, изобары, снова изохоры и ещё одной изобары (см. рис. к задаче $$ 1$$) найти КПД цикла.

    Решение

    Для получения коэффициента полезного действия необходимо найти:

    1) количество теплоты, потраченное (оно же получено рабочим телом) на проведение цикла, и

    2) полезную работу, совершенную за цикл.

    Тогда КПД находим по известной формуле:

    $$ \eta ={\displaystyle \frac{{A}_{\mathrm{цикл}}}{{Q}_{\mathrm{подв}}}}$$

    Затраты количества теплоты происходили на первом изохорном процессе:

    $$  \Delta {Q}_{1-2}= \Delta {U}_{1-2}+{A}_{1-2}= \Delta {U}_{1-2}={\displaystyle \frac{i}{2}}{V}_{12}({p}_{23}-{p}_{14})>0$$ и 

    на втором процессе – изобарном расширении:

    $$  \Delta {Q}_{2-3}= \Delta {U}_{2-3}+{A}_{2-3}={\displaystyle \frac{i}{2}}{p}_{2-3}({V}_{34}-{V}_{12})+{p}_{23}({V}_{34}-{V}_{12})>0$$.$$ $$

    Всего затрачено (а рабочим телом получено)

    $$ \Delta {Q}_{1-3}=\Delta {U}_{1-3}+{A}_{1-3}={\displaystyle \frac{i}{2}}({p}_{23}{V}_{34}-{p}_{14}{V}_{12})+{p}_{23}({V}_{34}-{V}_{12})=$$

    $$ ={\displaystyle \frac{i}{2}}\nu R({T}_{3}-{T}_{1})+\nu R({T}_{3}-{T}_{2})$$. 

    Т. к. тепло подводится на участках $$ 1–2$$ и $$ 2–3$$ (т. е. на участке $$ 1–2$$), то

    $$ \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{\Delta {Q}_{1-3}}}$$.

    2) Работа за цикл находится уже рассмотренным в предыдущем примере 

    $$ {A}_{1-2-3-4-1}={A}_{1-2}+ {A}_{2-3}+ {A}_{3-4}+ {A}_{4-1}={A}_{2-3}+ {A}_{4-1}=$$
    $$ ={p}_{23}({V}_{34} -{V}_{12})+{p}_{14}({V}_{12}-{V}_{34})=({p}_{23}-{p}_{14})({V}_{34}-{V}_{12}) =$$
    $$ =\nu R({T}_{3}-{T}_{2}-{T}_{4}+{T}_{1})$$.

    При получении окончательной формулы использовано уравнение состояния идеального газа.

    Найдём КПД:

    $$ \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{ \Delta {Q}_{1-3}}}={\displaystyle \frac{\nu R({T}_{3}-{T}_{2}-{T}_{4}+{T}_{1})}{{\displaystyle \frac{i}{2}}\nu R({T}_{3}-{T}_{1})+\nu R({T}_{3}-{T}_{2})}}={\displaystyle \frac{{T}_{3}-{T}_{2}-{T}_{4}+{T}_{1}}{{\displaystyle \frac{i}{2}}({T}_{3}-{T}_{1})+({T}_{3}-{T}_{2})}}$$

    или

    $$  \eta ={\displaystyle \frac{{A}_{1-2-3-4-1}}{ \Delta {Q}_{1-3}}} ={\displaystyle \frac{({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})}{ \frac{i}{2}({p}_{23}{V}_{34}-{p}_{14}{V}_{12})+{p}_{23}\left)\right({V}_{34}-{V}_{12})}} =$$

    $$ ={\displaystyle \frac{({p}_{23}-{p}_{14})({V}_{34}-{V}_{12})}{\frac{i}{2}{V}_{12}({p}_{23}-{p}_{14})+(\frac{i}{2}+1){p}_{23}({V}_{34}-{V}_{12})}}$$.

    Пусть $$ {p}_{23}=2{p}_{14}$$, $$ i=3$$, $$ {V}_{34}=3{V}_{12}$$. Тогда для такого случая получаем:

    $$ \eta ={\displaystyle \frac{2{p}_{14}{V}_{12}}{\mathrm{1,5}{p}_{14}{V}_{12}+10{p}_{14}{V}_{12}}}={\displaystyle \frac{2}{\mathrm{11,5}}}={\displaystyle \frac{4}{23}} \approx \mathrm{0,17}$$.

    задача 3

    Воздух в комнате объёмом $$ 100 {\mathrm{м}}^{3}$$ прогрели от `t_1 = 10^@"C"` до `t_2 = 50^@"C"`. Давление воздуха – нормальное атмосферное. На сколько изменились масса и внутренняя энергия воздуха в комнате при повышении температуры?

    Решение

    Для ответа на первый вопрос воспользуемся уравнением Менделеева – Клапейрона: $$ pV=\frac{m}{M}RT$$, откуда $$ m=\frac{pVM}{RT}$$. С учётом того, что
    процесс расширения воздуха изобарный, то

    $$  \Delta m={\displaystyle \frac{{p}_{0}VM}{R}}(\frac{1}{{T}_{2}}-\frac{1}{{T}_{1}})$$.

    $$  \Delta m={\displaystyle \frac{1}{R}}{p}_{0}VM({\displaystyle \frac{1}{{T}_{2}}}-{\displaystyle \frac{1}{{T}_{1}}}) \approx -\mathrm{15,3} \mathrm{кг}$$. 

    Минус указывает на убыль массы воздуха в комнате.

    Для изменения внутренней энергии запишем: $$  \Delta U= {\displaystyle \frac{i}{2}}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})$$. Заметим, что $$ {p}_{2}={p}_{1}={p}_{0}$$, также $$ {V}_{2}={V}_{1}=V$$. Эти факты указывают на то, что внутренняя энергия воздуха не изменяется: $$ \Delta U={\displaystyle \frac{i}{2}}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})=0$$.

    Из результата можно понять, что убыль внутренней энергии за счёт уменьшения массы равна приросту внутренней энергии за счёт увеличения температуры.

    Тогда возникает вопрос целесообразности отопления зданий, ведь внутреннюю энергию при этом мы не увеличиваем. Ответ на вопрос лежит совсем в другой области: увеличение температуры воздуха помогает нашему организму терять меньше энергии (закон Фурье) и тем самым поддерживать скорость химических реакций обмена веществ в организме (метаболизм) на необходимом комфортном уровне.

    задача 4

    Идеальный одноатомный газ молярной массы $$ М$$ в количестве $$ \nu $$ моль нагревается так, что температура растёт по закону $$ T=\alpha {V}^{2}$$, где $$ \alpha =\mathrm{const}$$:

    1) Найти работу, совершённую газом при увеличении его объёма от $$ {V}_{1}$$ до $$ {V}_{2}$$.

    2) Поглощается или выделяется энергия в таком процессе?

    3) Чему равна молярная теплоёмкость газа в таком процессе?

    Решение

    1) Определим сначала, как давление в этом процессе зависит от объёма при изображении процесса на $$ рV$$-диаграмме. Для этого воспользуемся уравнением Менделеева-Клапейрона: $$ pV=\nu RT=\nu R·\alpha {V}^{2}$$.

    Тогда получим, сокращая объём, что: $$ p=\nu R·\alpha V=\beta ·V$$, где $$ \nu R·\alpha  =\beta $$. Видим, что давление изменяется прямо пропорционально объёму, и графиком процесса на $$ pV$$-диаграмме будет отрезок $$ 1–2$$, лежащий на прямой, проходящей через начало координат (см. рис. $$ 23$$).  

    Работа численно равна площади фигуры под графиком процесса на данной диаграмме. Площадь можно найти геометрически, как площадь трапеции:

    $$ {A}^{\text{'}}={\displaystyle \frac{({p}_{1}+{p}_{2})}{2}}({V}_{2}-{V}_{1})={\displaystyle \frac{1}{2}}(\beta {V}_{1}+\beta {V}_{2})({V}_{2}-{V}_{1})=$$

    $$ ={\displaystyle \frac{\beta }{2}}({V}_{2}^{2}-{V}_{1}^{2})={\displaystyle \frac{\nu R\alpha }{2}}({V}_{2}^{2}-{V}_{1}^{2})$$.

    2) Так как объём газа увеличивается, и давление тоже растёт, то:

    а) Работа газа положительнa $$ {A}^{\text{'}}>0$$.

    б) Температура и, как следствие, внутренняя энергия увеличиваются $$  \Delta U>0$$. 

    Следовательно, в этом процессе газ получает теплоту $$  \Delta Q= \Delta U+{A}^{\text{'}}>0$$.

    3) Молярная теплоёмкость процесса определяется отношением:

    $$ {c}_{\mathrm{моль}}={\displaystyle \frac{\Delta Q}{\nu ·\Delta T}}={\displaystyle \frac{ \Delta U+{A}^{\text{'}}}{\nu ·\Delta T}}={\displaystyle \frac{\frac{i}{2}({p}_{2}{V}_{2}-{p}_{1}{V}_{1})+\frac{({p}_{1}+{p}_{2})}{2}({V}_{2}-{V}_{1})}{\nu ·\alpha ({V}_{2}^{2}-{V}_{1}^{2})}}=$$

    $$ ={\displaystyle \frac{\frac{i}{2}\beta ({V}_{2}^{2}-{V}_{1}^{2})+\frac{\beta }{2}({V}_{2}^{2}-{V}_{1}^{2})}{\nu ·\alpha ({V}_{2}^{2}-{V}_{1}^{2})}}$$.

    $$ {c}_{\mathrm{моль}}={\displaystyle \frac{\frac{i}{2}\beta +\frac{\beta }{2}}{\nu ·\alpha }}={\displaystyle \frac{\frac{\nu R\alpha }{2}(i+1)}{\nu ·\alpha }}={\displaystyle \frac{(i+1)R}{2}}$$.

    Для одноатомного газа `(i=3)` получаем

    $$ {c}_{\mathrm{моль}}={\displaystyle \frac{(3+1)\mathrm{8,31}\mathrm{Дж}/(\mathrm{моль}·\mathrm{К})}{2}}=\mathrm{16,62} \mathrm{Дж}/\mathrm{моль}·\mathrm{К}$$

    задача 5

    В цилиндре под поршнем находится $$ \nu =\mathrm{0,5}$$ моль воздуха при температуре $$ {T}_{0}=300$$ K. Во сколько раз увеличится объём газа при сообщении ему количества теплоты $$ Q=\mathrm{13,2}$$ кДж?

    Решение

    Из текста задачи следует, что процесс нагрева газа идёт изобарно (находится в цилиндре под поршнем). Молярная теплоёмкость в таком процессе равна $$ {c}_{p}=({\displaystyle \frac{i}{2}}+1)R={\displaystyle \frac{7}{2}}R$$.

    Количество теплоты, потраченное (полученное газом) в процессе,

    $$  \Delta Q={c}_{p}·\nu ·\Delta T={\displaystyle \frac{{c}_{p}}{R}}·\nu R \Delta T={\displaystyle \frac{{c}_{p}}{R}}·p\Delta V$$.

    Неизвестное давление $$ р$$ выразим из уравнения Менделеева – Клапейрона: $$ pV= {\displaystyle \frac{m}{M}}RT$$, откуда $$ p={\displaystyle \frac{m}{MV}}RT={\displaystyle \frac{\nu RT}{V}}$$. Подставляя это выражение в предыдущее, получим:

    $$  \Delta Q={\displaystyle \frac{{c}_{p}}{R}}·P\Delta V={\displaystyle \frac{{c}_{p}}{R}}·{\displaystyle \frac{\nu RT}{V}}·({V}_{1}-V)={c}_{p}\nu T({\displaystyle \frac{{V}_{1}}{V}}-1)$$, откуда для искомой величины находим

    $$ {\displaystyle \frac{{V}_{1}}{V}}={\displaystyle \frac{\Delta Q}{{c}_{p}\nu T}}+1$$, $$ {\displaystyle \frac{{V}_{1}}{V}}={\displaystyle \frac{\mathrm{13,2}\mathrm{кДж}}{\mathrm{29,085}\frac{\mathrm{Дж}}{\mathrm{моль} \mathrm{К}}· \mathrm{0,5} \mathrm{моль}·300 \mathrm{К}}}+1=4$$.

    задача 6

    Моль гелия расширяется в изотермическом процессе $$ 1–2$$, совершая работу величиной $$ {A}_{12}$$Затем газ охлаждается в изобарическом процессе $$ 2–3$$ и, наконец, в адиабатическом процессе $$ 3–1$$ возвращается в исходное состояние (рис. $$ 24$$). Какую работу совершил газ в замкнутом цикле, если разность максимальной и минимальной температур газа в нём составила величину $$ \Delta Т$$ градусов? 

    Решение

    Вспомним, что работа за цикл (замкнутый процесс) равна сумме количеств теплоты, потраченных (переданных газу) в каждом из процессов:

    $$ {A}_{1-2-3-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-1}$$.

    Теперь запишем первый закон термодинамики для каждого процесса в отдельности:

    1) В первом процессе температура не изменяется, вся энергия идёт на совершение работы $$  \Delta {Q}_{1-2}= \Delta {U}_{12}+{A}_{12}=0+{A}_{12}={A}_{12}$$.

    2) На втором процессе температура падает от $$ {Т}_{2}$$ до $$ {Т}_{3}$$, и данная величина составляет заданную в условии задачи разность температур $$ \Delta Т$$ (т. к. $$ {Т}_{3}$$ - минимальная температура, а $$ {Т}_{1}={Т}_{2}$$, тогда $$ ({T}_{1}-{T}_{3})=({T}_{2}-{T}_{3})= \Delta T$$.
    $$  \Delta {Q}_{2-3}= \Delta {U}_{23}+{A}_{23}^{\text{'}}=-{\displaystyle \frac{i}{2}}\nu R\Delta T=-({\displaystyle \frac{i}{2}}+1)\nu R\Delta T$$.

    3) Для адиабатного процесса $$ 3-1$$ имеем (по определению адиабатного процесса): $$  \Delta {Q}_{3-1}=0$$.

    Сложим полученные результаты и получим ответ:

    $$ {A}_{1-2-3-1}= \Delta {Q}_{1-2}+ \Delta {Q}_{2-3}+ \Delta {Q}_{3-1}={A}_{12}-({\displaystyle \frac{i}{2}}+1)\nu R \Delta T+0$$.

    Или окончательно для гелия:

    $$ {A}_{1-2-3-1}={A}_{12}-{\displaystyle \frac{5}{2}}\nu R\Delta T$$. 

    задача 7

    В проточном калорифере исследуемый газ пропускают по трубопроводу и нагревают электронагревателем (см. рис. $$ 25$$). При этом измеряют количество газа, пропускаемого через трубопровод в единицу времени, и температуру газа перед и за нагревателем. При продувании воздуха в калориметре температура за нагревателем оказалось на величину $$ \Delta Т=5$$ К выше, чем перед нагревателем. Массовый расход воздуха $$ {m}_{\tau }=720$$ кг/ч. Определить мощность нагревателя $$ N$$. Считать, что вся теплота, выделяемая нагревателем, отдаётся газу.
    Решение

    Рассмотрим часть газа, находящегося в трубе в той части, где расположен нагреватель (между сечениями $$ 1$$ и $$ 2$$) (рис. $$ 26$$). Первый термометр $$ \left({Т}_{1}\right)$$ находится перед рассматриваемой областью, а второй $$ \left({Т}_{2}\right)$$ за ней.

    Запишем первый закон термодинамики для выделенной части газа: 

    $$  \Delta Q= \Delta U+{A}^{\text{'}}$$.

    Теперь рассмотрим подробнее каждое слагаемое в этом уравнении.

    Количество теплоты, получаемое газом от нагревателя за время $$ \Delta t$$, можно записать так:

    $$ \Delta Q=N \Delta t$$.

    Изменение внутренней энергии для $$ \Delta \nu $$ молей воздуха, прошедших через выделенную область за время $$ \Delta t$$, определяется выражением

    $$  \Delta U={\displaystyle \frac{i}{2}}\nu R({T}_{2}-{T}_{1})$$.

    Работа $$ {A}^{\text{'}}$$ газа над окружающими телами складывается из работы $$ {A}_{1}^{\text{'}}$$ газа при перемещении его левой границы (сечение $$ 1$$, перемещение $$ 1–{1}^{\text{'}}\text{'}$$) и работы $$ {A}_{2}^{\text{'}}$$ газа при перемещении его правой границы (сечение $$ 2$$, перемещение $$ 2–{2}^{\text{'}}\text{'}$$):

    $$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}$$.

    Заметим, что `A_1^'<0` (газ в этой области сжимается), а $$ {A}_{2}^{\text{'}}>0$$ (газ в области расширяется).

    Процесс совершения работы слева идёт при постоянной температуре $$ {Т}_{1}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к введению в рассматриваемую область дополнительно $$  \Delta {\nu }_{1}$$ моль газа (показан как закрашенный участок справа от сечения $$ 1$$), занимающих объём $$ \Delta {V}_{1}$$. Для $$ {A}_{1}^{\text{'}}$$ получаем:

    $$ {A}_{1}^{\text{'}}=-{p}_{1} \Delta {V}_{1}=-\Delta {\nu }_{1·}R·{T}_{1}$$.

    Процесс совершения работы справа идёт при постоянной температуре $$ {Т}_{2}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к выведению из рассматриваемой области объёма газа $$  \Delta {\nu }_{2}$$ моль газа (показан на рисунке выделенным объёмом справа от сечения $$ 2$$), занимающих объём $$  \Delta {V}_{2}$$. Для $$ {A}_{2}^{\text{'}}$$ получаем:

    $$ {A}_{2}^{\text{'}}={p}_{2} \Delta {V}_{2}= \Delta {\nu }_{2}·R·{T}_{2}$$.

    При стационарном процессе нагрева воздуха количество вошедшего воздуха равно количеству вышедшего: $$  \Delta {\nu }_{1}= \Delta {\nu }_{2}= \Delta \nu $$. Тогда работа $$ {A}^{\text{'}}$$ равна

    $$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}=-\Delta \nu R{T}_{1}+ \Delta \nu R{T}_{2}= \Delta \nu R({T}_{2}-{T}_{1})$$,

    С учётом вышеизложенного перепишем первой закон термодинамики для рассматриваемой ситуации:

    $$ N \Delta T={\displaystyle \frac{i}{2}} \Delta \nu R({T}_{2}-{T}_{1})+\Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})$$.

    Любопытно заметить, что процесс нагрева воздуха проходит так, что его описание совпадает с процессом изобарного нагрева.

    Теперь подробнее остановимся на массовом расходе воздуха $$ {m}_{\tau }$$.

    $$ {m}_{\tau }={\displaystyle \frac{\Delta m}{ \Delta t}}={\displaystyle \frac{\Delta \nu M}{ \Delta t}}$$, тогда $$ \Delta \nu ={m}_{\tau }{\displaystyle \frac{\Delta t}{M}}$$,

    $$ N·\Delta t=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1){m}_{\tau }{\displaystyle \frac{\Delta t}{M}}R({T}_{2}-{T}_{1})$$.

    Откуда получаем ответ:

    $$ N=({\displaystyle \frac{i}{2}}+1){\displaystyle \frac{{m}_{\tau }}{M}}R({T}_{2}-{T}_{1})=$$

    $$ =\left(\mathrm{3,5}\right){\displaystyle \frac{720\mathrm{кг}}{360с \mathrm{0,029}\frac{\mathrm{кг}}{\mathrm{моль}}}}\mathrm{8,31}{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}5 \mathrm{K} \approx 1000 \mathrm{Вт}$$.

    задача 8

    С идеальным одноатомным газом проводят циклический процесс $$ 1–2–3–1$$, состоящий из адиабатического расширения $$ 1–2$$, расширения в процессе $$ 2–3$$, в котором теплоёмкость газа оставалась постоянной, и сжатия в процессе $$ 3–1$$ с линейной зависимостью давления от объёма (см. рис. $$ 27$$). Известно, что связь между температурами и объёмами в промежуточных состояниях $$ 1$$, $$ 2$$ и $$ 3$$ выражается соотношениями: $$ {T}_{1}=2{T}_{2}={T}_{3}$$, $$ {V}_{3}=4{V}_{1}$$.  Найдите молярную теплоёмкость газа в процессе $$ 2–3$$, если работа, совершённая над газом в цикле, составляет $$ 7/15$$ от работы, совершённой над газом в процессе $$ 3–1$$.


    Решение

    Первый закон термодинамики для процесса $$ 1–2$$ можем записать так:

    $$ \Delta {Q}_{12}=0$$ (адиабатическое расширение).

    Для процесса $$ 2–3$$ первый закон термодинамики можно записать так:

    $$  \Delta {Q}_{23}={c}_{23}·\nu ({T}_{3}-{T}_{2})$$.

    И, наконец, для процесса $$ 3–1$$ имеем:

    $$  \Delta {Q}_{31}= \Delta {U}_{31}+{A}_{31}^{\text{'}}=0+\left({\displaystyle \frac{{p}_{1}+{p}_{3}}{2}}\right)({V}_{1}-{V}_{3})=-{\displaystyle \frac{1}{2}}·{\displaystyle \frac{15}{4}}{p}_{3}{V}_{3} =-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.

    Работа газа за весь цикл равна сумме количеств теплоты:

    $$ {A}_{1-2-3-1}=  \Delta {Q}_{1-2}+\Delta {Q}_{2-3}+\Delta {Q}_{3-1}=0+{c}_{23}\nu ({T}_{3}-{T}_{2})-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.

    $$ {A}_{1-2-3-1}={\displaystyle \frac{7}{15}}{A}_{31}=-{\displaystyle \frac{7}{15}}·{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.

    Приравняем:

    $$ -{\displaystyle \frac{7}{15}}·{\displaystyle \frac{15}{8}}\nu R{T}_{1}={c}_{23}\nu ({T}_{3}-{T}_{2})-{\displaystyle \frac{15}{8}}\nu R{T}_{1}$$.

    Откуда, с учётом соотношений температур $$ {T}_{1}=2{T}_{2}={T}_{3}$$, искомая теплоёмкость будет равна $$ {c}_{23}=2R$$.

















  • 1.1. Электрические заряды. Закон сохранения заряда

    Всю совокупность электромагнитных явлений (не только электростатических!) удаётся объяснить существованием в природе только двух (не большего, но и не меньшего числа) типов электрических зарядов, одни из которых выражаются положительными числами, другие – отрицательными.

    В Международной системе СИ за единицу измерения заряда принят кулон (Кл).

    Точечными зарядами

    называют такие заряженные тела, размеры которых много меньше, чем характерные расстояния между ними.

    Разноимённые точечные заряды притягиваются, а одноимённые отталкиваются друг от друга. Для тел конечных размеров это свойство может не выполняться (сильно наэлектризованное тело может притягивать тело, имеющее небольшой заряд того же знака).

    Аддитивность электрического заряда:

    электрический заряд любой системы тел (частиц) равен алгебраической сумме зарядов, входящих в систему.

    Дискретность заряда и существование элементарного заряда.

     Заряд любого тела можно представить в виде целого числа элементарных зарядов: `q=Ze`, где `Z` – целое число, `e` – так  называемый  элементарный  заряд,

    `e~~1,6*10^(-19)`Кл, численно равный заряду протона (или заряду электрона с противоположным знаком).

    Ещё одно важное свойство заряда – независимость величины заряда от скорости движения, или инвариантность заряда. Если бы это свойство не имело места, то нельзя было бы вообще говорить о величине заряда, например, электрона, без указания системы отсчёта и задания его скорости в ней.

    Закон сохранения заряда.

    В замкнутой (изолированной) системе тел, которая не обменивается зарядами с другими телами, алгебраическая сумма зарядов отдельных тел остаётся неизменной, какие бы изменения внутри системы ни происходили – превращения одних заряженных частиц в другие, рождение или уничтожение заряженных частиц:

    `q_1+q_2+q_3+...=q_1^'+q_2^'+q_3^'+...="const"`.                                 (1.1.1)