Автор
Чивилев Виктор Иванович 1358 статей

5. Атмосферное давление. Опыт Торричелли

Понятие атмосферного давления

Земля окружена воздушной оболочкой, состоящей из смеси газов. Эта оболочка называется атмосферой. Каждый горизонтальный слой атмосферы сжат весом более верхних слоёв. Поэтому давление в нижних слоях атмосферы больше, чем в верхних. При этом и плотность воздуха в нижних слоях значительно больше, чем в верхних. Это связано с тем, что газы под воздействием давления могут сильно уменьшить свой объём. Жидкости же обладают очень малой сжимаемостью и практически не изменяют своей плотности даже при больших давлениях. Атмосферное давление на уровне моря равно примерно 105 Па10^5\;\mathrm{Па}, т. е. 100000 Па100000\;\mathrm{Па}. Это желательно помнить. С увеличением высоты над уровнем моря атмосферное давление уменьшается. На высоте примерно в 5,5 км5,5\;\mathrm{км} оно уменьшается вдвое.

Значение атмосферного давления впервые определил экспериментально в 1634 г. итальянский учёный Торричелли, создав простейший ртутный барометр. Опыт Торричелли состоит в следующем. Стеклянная трубка длиной около метра, запаянная с одного конца, заполняется полностью ртутью. Затем, закрыв отверстие трубки, её переворачивают и погружают открытым концом в чашу со ртутью (см. рис.).

Часть ртути из трубки выливается, и в ней остаётся столб ртути высотой `H`. Давление в трубке над ртутью равно нулю (если пренебречь ничтожным давлением паров ртути), так как там - пустота (вакуум):  `P_C = 0`. Давление `P_B` в точке `B` равно давлению `P_A` в точке `A`, поскольку в сообщающихся сосудах - чаше и трубке - точки `A` и `B` находятся на одном уровне. Давление `P_A` равно атмосферному давлению $$ {P}_{\mathrm{атм}}$$.  Поэтому $$ {P}_{B}={P}_{\mathrm{атм}}$$. Разность давлений `P_B - P_C = rho gH`, где `rho` - плотность ртути. Так как $$ {P}_{B}={P}_{\mathrm{атм}}$$  и `P_C = 0`, то $$ {P}_{\mathrm{атм}} =\rho gH$$. Измерив `H` и зная `rho`, можно определить атмосферное давление в условиях опыта. Торричелли нашёл, что для уровня моря H=760 ммH=760\;\mathrm{мм}.

В опыте Торричелли каждому значению `H` соответствует определённое значение $$ {P}_{\mathrm{атм}}$$. Следовательно, атмосферное давление можно измерять в миллиметрах ртутного столба. Эта единица давления получила специальное название «Торр»: `1`Торр `= 1` мм. рт.ст. При этом высота столба ртути берётся той, которую он имел бы при `0^@"C"`. Атмосферное давление в `760` Торр называется нормальным атмосферным давлением. Значение этого давления называется нормальной (физической) атмосферой и обозначается 1 атм1\;\mathrm{атм}.  Зная плотность ртути  ρ=13595 кг/м3\rho=13595\;\mathrm{кг}/\mathrm м^3, находим по формуле    $$ {P}_{\mathrm{атм}}=\rho gH$$:

1 атм=760 Торр101325 Па1,013·105 Па1\;\mathrm{атм}=760\;\mathrm{Торр}\approx101325\;\mathrm{Па}\approx1,013\cdot10^5\;\mathrm{Па}.                         

Умножим равенство $$ {P}_{\mathrm{атм}}=\rho gH$$ на площадь `S` внутреннего сечения трубки: $$ {P}_{\mathrm{атм}}S=\rho gHS$$. Заметим, что последнее равенство можно получить и непосредственно, записав условие равновесия  столба `BC`  ртути (рис. 6). Произведение $$ {P}_{\mathrm{атм}}S$$ равно силе давления `F` на столб ртути `BC` снизу, вызванное наличием атмосферного давления, а `rho gHS` есть вес столба `BC` ртути в трубке. Поэтому говорят, что в опыте Торричелли давление, создаваемое весом столба ртути, уравновешивается атмосферным давлением.

Замена ртути водой в опыте Торричелли требует высоты трубки более `10` м. Действительно, при нормальном атмосферном давлении 1 атм1\;\mathrm{атм} для значения плотности воды ρ=1000 кг/м3\rho=1000\;\mathrm{кг}/\mathrm м^3 из формулы $$ {P}_{\mathrm{атм}}=\rho gH$$ следует, что H10,3 мH\approx10,3\;\mathrm м. Это означает, что нормальное атмосферное давление уравновешивается столбом воды высотой `10,3` м.   

Несколько замечаний для решения задач. Полезно помнить, что плотность воды равна 1000 кг/м31000\;\mathrm{кг}/\mathrm м^3 и гидростатическое давление в 105 Па10^5\;\mathrm{Па} создаётся в воде на глубине приблизительно 10 м10\;\mathrm м. Проверьте это, используя формулу для гидростатического давления.

Поскольку плотность воздуха намного меньше плотности воды, изменением атмосферного давления, связанным с перепадом высоты в несколько метров, можно в ряде случаев пренебречь по сравнению с гидростатическим давлением воды, вызванным таким же перепадом высоты.

Задача 2

В сосуд налита вода (см. рис.).

Расстояние от поверхности воды до дна H=0,5 мH=0,5\;\mathrm м. Площадь дна S=0,1 м2S=0,1\;\mathrm м^2. Найти гидростатическое давление `P_1` и полное давление `P_2` вблизи дна. Найти силу давления воды на дно.

Решение

Плотность воды ρ=103 кг/м3\rho=10^3\;\mathrm{кг}/\mathrm м^3. Гидростатическое давление

$$ {P}_{1}=\rho gH={10}^{3} \mathrm{кг}/{\mathrm{м}}^{3}·\mathrm{9,8} \mathrm{м}/{\mathrm{с}}^{2}·\mathrm{0,5} \mathrm{м}\approx 5·{10}^{3} \mathrm{Па}=5000 \mathrm{Па}$$.

Полное давление складывается из атмосферного $$ {P}_{\mathrm{атм}}={10}^{5}\mathrm{Па}$$ и гидростатического:

 $$ {P}_{2}={P}_{\mathrm{атм}}+{P}_{1}=100000 \mathrm{Па}+5000 \mathrm{Па}=105000 \mathrm{Па}$$.

Интересно, что полное давление мало отличается от атмосферного, так как толщина слоя воды достаточно мала. Сила давления воды на дно $$ F={P}_{2}·S=105000 \mathrm{Па}·\mathrm{0,1} {\mathrm{м}}^{2}=10500 H$$.

Задача 3

На лёгкий поршень площадью `S`, касающийся поверхности воды, поставили гирю массой `m` (см. рис.).

Высота слоя  воды в сосуде с вертикальными стенками  `H`. Определить давление в жидкости вблизи дна. Плотность воды `rho`.

Решение

На поршень снизу со стороны воды действует направленная вверх сила `F_1 = P_1 S`, где `P_1` давление вблизи поршня. Сверху на поршень действует гиря и атмосферный воздух с силой `F_2 = mg + P_"атм" S`, где g=9,8 м/с2g=9,8\;\mathrm м/\mathrm с^2, $$ {P}_{\mathrm{атм}}={10}^{5} \mathrm{Па}$$ - атмосферное давление. Поршень находится в равновесии. Поэтому `F_1 = F_2`. Итак,  `P_1 S = mg + P_"атм" S`. Отсюда  `P_1 = P_"атм" + (mg)/S`.

Этот  результат можно писать и сразу, говоря, что давление под поршнем равно атмосферному `P_"атм"` и добавочному давлению  `mg//S`, создаваемому гирей.

Разность давлений в воде у дна и вблизи поршня: `P_2 - P_1 = rho gH`.

Отсюда  `P_2 = P_1 + rho gH`.  

Окончательно, давление у дна `P_2 = P_"атм" + (mg)/S + rho gH`.