1. Проекция вектора на заданное направление.
Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O` (рис. 10). Угол, образованный лучами, исходящими из точки `O` и направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.
Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vecb`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vecb`, будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.
Угол `alpha` может принимать различные значения, поэтому в зависимости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`, то косинус такого угла отрицателен (см. рис. 11).
Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны (см. рис. 12).
Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.
Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.
2. Разложение вектора.
До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.
Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O` прямые `AO` и `OB` (см. рис. 13).
Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`. В результате получится параллелограмм. По построению
`vec a = vec(a_1) + vec(a_2)` (*)
Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.
В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?
Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.
Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `varphi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `varphi = 15^@`. Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)` (см. рис. 13).
`a_(a1) = a cos varphi_1 ~~ 0,97`, `a_(a2) = a cos varphi_2 = cos 30^@ ~~ 0,87`.
Далее по теореме синусов , `a_1/(sin varphi_2) = a/(sin (180^@ - varphi_1 - varphi_2))`,
откуда `a_1 = (sin varphi_2)/(sin (varphi_1 + varphi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`
и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.
3. Проектирование вектора на оси координат.
Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j` назовём единичными векторами.
Перенесём вектор `vec a` так, чтобы его начало совпало с началом координат. Пусть в этом положении он изображается направленным отрезком `AO` (рис. 14).
Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда векторы `vec(a_x)` и `vec(a_y)` будут составляющими вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vecj`. Следовательно, существуют такие числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:
`vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`. (3)
Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.
Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).
Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha` (рис.14). Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.
В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.
Зная проекции вектора `vec a` на оси координат, можно найти его величину и направление по формулам:
`a = sqrt( a_x^2 + a_y^2)` (4)
и
`"tg" alpha = (a_y)/(a_x)` (5)
причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту принадлежит значение `alpha`.
4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c` (рис. 15).
Проектируя все векторы на оси координат, получим очевидные равенства
`c_x = a_x + b_x`, `c_y = a_y + b_y`,
или
`c_x = a cos alpha + b cos beta`,
`c_y = a sin alpha + b sin beta`,
т. е. по проекциям векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.