§2. Проекция вектора на заданное направление

1. Проекция вектора на заданное направление. 

Пусть заданы два вектора `vec a` и `vec b`. Приведём эти векторы к одному началу `O` (рис. 10). Угол, образованный лучами, исходящими из точки `O` и  направленными вдоль векторов `vec a` и `vec b`, называют углом между векторами `vec a` и `vec b`. Обозначим этот угол через `alpha`.

Число `a_b = a cos alpha` называется проекцией вектора `vec a` на направление вектора `vecb`. Проекция вектора `vec a` получается, если из его конца опустить перпендикуляр на направление вектора `vec b` (рис. 10), тогда расстояние от общего  начала векторов - точки `O` - до точки пересечения указанного перпендикуляра с прямой, на которой лежит вектор `vecb`,  будет равно модулю проекции вектора `vec a` на направление вектора `vec b`.

Угол `alpha` может принимать различные значения, поэтому в зави­симости от знака `cos alpha` проекция может принимать положительные, отрицательные значения или нуль. Например, если угол `alpha` тупой, т. е. больше, чем `90^@`, но меньше `180^@`,  то косинус такого угла отрицателен (см. рис. 11).

Проекция равна нулю, если направления векторов `vec a` и `vec b` взаимно перпендикулярны (см. рис. 12).

Проекции равных векторов на любые направления равны друг другу. Проекции противоположных векторов отличаются знаком.

Легко показать, что проекция суммы векторов равна алгебраической сумме их проекций и что при умножении вектора на число его проекция умножается на то же число.

2. Разложение вектора.

До сих пор мы говорили о сложении векторов. Для решения многих задач бывает необходимо произвести обратную процедуру - разложить вектор на составляющие, например, найти несколько сил, которые своим совместным действием могли бы заменить одну данную силу. Такая операция называется разложением сил.

Пусть на плоскости задан вектор `vec a` и две пересекающиеся в точке `O`  прямые `AO` и `OB` (см. рис. 13).

Вектор `vec a` можно представить в виде суммы двух векторов, направленных вдоль заданных прямых. Для этого параллельным переносом совместим начало вектора `vec a` с точкой `O` пересечения прямых. Из конца вектора `vec a` проведём два отрезка прямых, параллельных `AO` и `OB`.  В результате получится параллелограмм. По построению

`vec a = vec(a_1) + vec(a_2)`                                                                            (*)

Векторы `vec(a_1)` и `vec(a_2)` называются составляющими вектора `vec a` по заданным направлениям, а само представление вектора в виде суммы (*) - разложением вектора по двум направлениям.

Пример 1

В чём разница между проекцией вектора на ось и составляющей (компонентой) вектора вдоль этой оси?

Ответ

Проекция вектора - скаляр; составляющая вектора вдоль этой оси - вектор, направленный вдоль этой оси.

Пример 2

Пусть `a = 1`, угол между прямыми `AO` и `OB` равен `varphi = 45^@`, а угол между векторами `vec a` и `vec(a_1)` равен `varphi = 15^@`.    Определите модули векторов `vec a_1` и `vec a_2` в разложении (*), а также значения проекций вектора `vec a` на направления `vec(a_1)` и `vec(a_2)` (см. рис. 13).

Решение

`a_(a1) = a cos varphi_1 ~~ 0,97`, `a_(a2) = a cos varphi_2 = cos 30^@ ~~ 0,87`.

Далее по теореме синусов , `a_1/(sin varphi_2)  = a/(sin (180^@ - varphi_1 - varphi_2))`,

откуда  `a_1 = (sin varphi_2)/(sin (varphi_1 + varphi_2)) = (sin 30^@)/(sin 45^@) ~~ 0,71`

и аналогично `a_2 = (sin 15^@)/(sin 45^@) ~~ 0,37`.

3. Проектирование вектора на оси координат. 

Особенно важен частный случай разложения вектора по двум взаимно перпендикулярным направлениям. Пусть на плоскости задана прямоугольная система координат `xOy` и некоторый вектор `vec a`. Отложим из начала координат вдоль положительного направления осей `Ox` и `Oy` векторы `vec i` и `vec j` соответственно такие, что `|vec i| = 1` и `|vec j| = 1`. Векторы `vec i` и `vec j`  назовём единичными векторами.

Перенесём  вектор `vec a` так,  чтобы его начало совпало с началом координат. Пусть  в  этом положении он изображается направленным отрезком `AO` (рис. 14).

Опустим из точки `A` перпендикуляры на оси `Ox` и `Oy`. Тогда  векторы `vec(a_x)` и `vec(a_y)` будут  составляющими  вектора `vec a` по координатным осям, причём вектор `vec(a_x)` будет коллинеарен вектору `vec i`, а вектор `vec(a_y)` - коллинеарен вектору `vecj`. Следовательно, существуют такие  числа `a_x` и `a_y`, что `vec(a_x) = a_x vec i` и `vec(a_y) = a_y vec j`. Таким образом, вектор `vec a` может быть представлен в виде разложения по осям:

`vec a = vec(a_x) + vec(a_y) = a_x vec i + a_y vec j`.                                                         (3)

Числа `a_x` и `a_y` суть проекции вектора `vec a` на направления векторов `vec i` и `vec j` соответственно, то есть на оси `Ox` и `Oy`. Используется и иная, чем (3), форма записи векторов, а именно `vec a = (a_x ; a_y)`.

Иногда говорят о составляющей вектора вдоль одной единственной оси - без указания второй. Просто молчаливо предполагается, что вторая ось перпендикулярна первой (но почему-то не нарисована).

Пусть угол между положительным направлением оси `Ox` и вектором `vec a` равен `alpha` (рис.14). Тогда `a_x = a cos alpha`, `a_y = a sin alpha`.

В зависимости от значения угла `alpha` проекции вектора `vec a` на оси прямоугольной системы координат могут быть положительными, отрицательными или равными нулю.

Зная проекции вектора `vec a` на оси координат, можно найти его вели­чину и направление по формулам:

`a = sqrt( a_x^2 + a_y^2)`                                                                                 (4)

и 

`"tg"  alpha = (a_y)/(a_x)`                                                                                 (5)

причём знаки `a_x` и `a_y` будут указывать на то, какому квадранту при­надлежит значение `alpha`.

4. Пусть теперь нам задано векторное равенство `vec a + vec b = vec c` (рис. 15).

Проектируя все векторы на оси координат, получим очевидные равенства 

`c_x = a_x + b_x`,  `c_y = a_y + b_y`,

или

`c_x = a cos alpha + b cos beta`,

`c_y = a sin alpha + b sin beta`,

т. е. по проекциям  векторов `vec a` и `vec b` легко находятся проекции суммарного вектора `vec c`.