Автор
Плис Валерий Иванович 578 статей

§5. Задачи на столкновения и законы сохранения импульса и энергии

В физике под столкновениями понимают процессы взаимодействия  между телами (частицами) в широком смысле слова, а не только в буквальном - как соприкосновение тел. Сталкивающиеся тела на большом расстоянии являются свободными. Проходя друг мимо друга, тела взаимодействуют между собой, в результате могут происходить различные процессы - тела могут соединиться в одно тело (абсолютно неупругий удар), могут возникать новые тела и, наконец, может иметь место упругое столкновение, при котором тела после некоторого сближения вновь расходятся без изменения своего внутреннего состояния. Столкновения, сопровождающиеся изменением внутреннего состояния тел, называются неупругими. Тела (частицы), участвующие в столкновении, характеризуются (до и после столкновения)  импульсами, энергиями. Процесс столкновения сводится к изменению этих величин в результате взаимодействия. Законы сохранения энергии и импульса позволяют достаточно просто устанавливать соотношения между различными физическими величинами при столкновении тел. Особенно ценным здесь является то обстоятельство, что зачастую законы сохранения могут быть использованы даже в тех случаях, когда действующие силы не известны. Так обстоит дело, например, в физике элементарных частиц.

Происходящие в обычных условиях столкновения макроскопи­ческих тел почти всегда бывают в той или иной степени неупругими - уже хотя бы потому, что они сопровождаются некоторым нагреванием тел, т. е. переходом части их кинетической энергии в тепло. Тем не ме­нее, в физике понятие об упругих столкновениях играет важную роль - с такими столкновениями часто приходится иметь дело в физическом эксперименте в области атомных явлений, да и обычные столкновения можно часто с достаточной степенью точности считать упругими.

Сохранение импульса тел (частиц) при столкновении обусловлено тем, что совокупность тел, участвующих в столкновении, составляет либо изолированную систему, т. е. на тела, входящие в систему, не действуют внешние силы, либо замкнутую: внешние силы отличны от нуля, а сумма внешних сил равна нулю. Несколько сложнее обстоит дело с применением закона сохранения энергии при столкновениях. Обращение к сохранению энергии  требует порой учёта различных форм внутренней энергии.

Можно сказать, что действие законов сохранения импульса и энергии в процессах столкновения подтверждено широким спектром опытных данных.

Переходя к характерным примерам, отметим, что исследование столкновений традиционно проводится как в лабораторной системе отсчёта (ЛСО), т. е. в инерциальной системе отсчёта, связанной с лабораторией, где проводится опыт, так и в системе центра масс, с которой Вы познакомитесь в следующих Заданиях. Напомним также, что центральным ударом шаров (шайб), называют удар, при котором скорости шаров (шайб) направлены вдоль прямой, проходящей через их центры.

Неупругие столкновения

Пример 9

Частица массой `m` с кинетической энергией `K` сталкивается с неподвижной частицей массой `M`. Найдите приращение `Q` внутренней энергии системы частиц в результате абсолютно неупругого столкновения («слипания»).

Решение

Рассмотрим абсолютно неупругий удар двух тел в ЛСО. Налетающая частица движется до столкновения в положительном направлении оси `Ox` со скоростью `vec v`, кинетическая энергия частицы `K = (mv^2)/2`. В результате абсолютно неупругого удара (слипания) час­тицы движутся с одинаковой скоростью `vec u`. По закону сохранения им­пульса

`mv = (m + M) u`.

По закону сохранения  энергии

`(mv^2)/2 = ((m + M)u^2)/2 + Q`.

Из приведённых соотношений находим

`Q = M/(m + M) K`.

 Отметим, что в предельных случаях

 `Q = K`,

`m < < M`,

`Q = M/m K < < K`,

`m > > M`.

Как видим, при неупругом столкновении лёгкой частицы с массивной (например, электрона с атомом) происходит почти полный переход её кинетической энергии во внутреннюю энергию массивной частицы.

При равенстве масс  `(m = M)`  `Q = K/2`.

Отсюда следует, например, что при столкновении двух одинаковых ав­томобилей, один из которых неподвижен, а другой движется по на­правлению к нему, половина кинетической энергии идёт на разруше­ние.

Упругие столкновения

Пример 10

На гладкой горизонтальной поверхности лежит гладкий шар массой `M`. На него налетает гладкий шар того же радиуса массой `m`, движущийся со скоростью `vec v`. Происходит упругий центральный удар шаров. Найдите скорости `vecv_1` и `vecv_2` шаров после соударения. При каком условии налетающий шар будет двигаться после соударения в прежнем направлении?

Решение

Задачу рассмотрим в ЛСО, ось `Ox` которой направим по линии центров шаров в момент соударения. Внешние силы, действующие на  шары в  процессе соударения, это силы тяжести и силы нормальной реакции опоры. Их сумма равна нулю. Следовательно, импульс системы шаров в процессе взаимодействия не изменяется. По закону сохранения импульса

`m vec v = m vecv_1 + M vecv_2`.

Переходя к проекциям на ось `Ox`, получаем 

`mv = mv_(1x) + Mv_2`,

здесь учтено, что направление скорости налетающего шара после соударения не известно. По закону сохранения энергии

`(mv^2)/2 = (mv_(1x)^2)/2 + (Mv_2^2)/2`.

Полученные соотношения перепишем в виде

`m(v - v_(1x)) = Mv_2`,

`m(v^2 - v_(1x)^2) = Mv_2^2`.

Разделив второе равенство на первое `(v != v_(1x))`, приходим к линейной системе `v_2 = v + v_(1x)`,  `m(v - v_(1x)) = Mv_2`,  решение которой имеет вид

`v_(1x) = (m - M)/(m + M) v`,

`v_2 = (2m)/(m + M) v`.

Налетающий шар будет двигаться после соударения в прежнем направ­лении `(v_(1x) > 0)` при `m > M`,  т. е. если масса налетающего шара больше массы по­коящегося шара.

Пример 11

Две гладкие упругие круглые шайбы движутся поступательно по гладкой горизонтальной поверхности. Скорости `vecv_1` и `vecv_2` шайб непосредственно перед соударением известны и показаны на рис. 11. Найдите скорости `vecv_(1)^'` и `vecv_(2)^'` шайб после абсолютно упругого нецентрального соударения. Массы шайб `m_1` и `m_2`.

Решение

Задачу рассмотрим в ИСО, оси координат `Ox` и `Oy` которой лежат в горизонтальной плоскости, при  этом ось `Ox` направлена по линии  центров шайб в момент соударения (рис. 11).

В  течение  времени  соударения на систему шайб действуют только вертикальные внешние силы: это силы тяжести и силы нормальной реакции. Их сумма равна нулю. Тогда импульс системы шайб в процессе взаимодействия  сохраняется:                               

`vecp_1 + vecp_2 = vecp_(1)^' + vecp_(2)^'`,               

здесь `vecp_1 = m_1 vecv_1`, `vecp_2 = m_2 vecv_2`, `vecp_(1)^'= m_1 vecv_(1)^'`, `vecp_(2)^' = m_2 vecv_(2)^'` - импульсы шайб до и после соударения.

Так как шайбы идеально гладкие, то в процессе соударения внут­ренние силы -силы упругого взаимодействия - направлены только по оси `Ox`. Эти силы не изменяют `y`-составляющие импульсов шайб. Тогда из `p_(1y) = p_(1y)^'`, `p_(2y) =  p_(2y)^'`  находим `y`-составляющие скоростей шайб после соударения:

 `v_(1y)^' = v_(1y)`,   `v_(2y)^' = v_(2y)`,

т. е. в проекции на ось `Oy` скорости шайб в результате соударения не изменились.

Найдём `x`-составляющие скоростей шайб после упругого соударения. При таком соударении сохраняется кинетическая энергия

`(m_1 (v_(1x)^2 + v_(1y)^2))/2 + (m_2 (v_(2x)^2 + v_(2y)^2))/2 = (m_1 ((v_(1x)^')^2 + (v_(1y)^')^2))/2 + (m_2 ((v_(2x)^')^2 + (v_(2y)^')^2))/2`.

С учётом равенства `y`-составляющих скоростей шайб до и после со­ударения последнее равенство принимает вид:

`(m_1 v_(1x)^2)/2 + (m_2 v_(2x)^2)/2 = (m_1 (v_(1x)^')^2)/2 + (m_2 (v_(2x)^')^2)/2`.

Обратимся к закону сохранения импульса и перейдём к проекциям им­пульсов шайб на ось  `Ox`:

`m_1 v_(1x) + m_2 v_(2x) = m_1 v_(1x)^' + m_2 v_(2x)^'`.

Таким образом, исходная задача сведена к задаче об абсолютно упру­гом центральном ударе: именно такой вид приняли бы законы сохра­нения энергии и импульса, если бы скорости шайб были направлены по линии центров. Полученную нелинейную систему уравнений можно свести к линейной. Для этого следует (как и в предыдущей задаче) в обоих уравнениях по одну сторону знака равенства объединить слагае­мые, относящиеся к первой шайбе, а по другую - ко второй, и разде­лить `(v_(1x) != v_(1x)^')` полученные соотношения. Это приводит к линей­ному уравнению

`v_(1x) + v_(1x)^' = v_(2x) + v_(2x)^'`.

Решая систему из двух последних уравнений, находим

`v_(1x)^' = ((m_1 - m_2) v_(1x) + 2m_2 v_(2x))/(m_1 + m_2)`,

`v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1) v_(2x))/(m_1 + m_2)`.

Полученные соотношения для `v_(1x)^'`, `v_(1y)^'` и `v_(2x)^'`, `v_(2y)^'` решают вопрос о проекциях и величинах скоростей шайб после соударения

 `v_1^' = sqrt((v_(1x)^')^2 + (v_(1y)^')^2)`,      `v_2^' = sqrt((v_(2x)^')^2 + (v_(2y)^')^2)`, 

а также об углах `alpha_1` и `alpha_2`, которые векторы скорости `vecv_(1)^'` и `vecv_(2)^'` образуют с положительным направлением оси `Ox`,

`bbb"tg"  alpha_1 = (v_(1y)^')/(v_(1x)^')`,   `bbb"tg"  alpha_2 = (v_(2y)^')/(v_(2x)^')`.

Построенное в общем виде решение задач упругого центрального и нецентрального соударений открывает дорогу к анализу целого ряда задач, для которых рассмотренная модель соответствует характеру взаимодействия тел (частиц). Приведём пример.

Пример 12

Гладкая круглая шайба массой `m_1` движется со скоростью `vec v` вдоль хорды, расстояние до которой от центра гладкого тонкого однородного обруча  равно `R//2` (рис. 12). Обруч массой `m_2` и радиусом `R` лежит на гладком горизонтальном столе. Через какое время `tau` после первого удара шайба окажется  на  минимальном  расстоянии   от   центра   движущегося обруча? Каково это расстояние? Удар считайте абсолютно упругим.

Решение

Воспользуемся результатами, полученными в предыдущем примере. В ЛСО, ось `Ox` которой направлена по линии центров шайбы и обруча в момент соударения, проекции скоростей шайбы и центра обруча на ось `Ox`  после соударения равны соответственно

`v_(1x)^' = ((m_1 - m_2)v_(1x) + 2m_2 v_(2x))/(m_1 + m_2) = ((m_1 - m_2)v_(1x))/(m_1 + m_2)`,

`v_(2x)^' = (2m_1 v_(1x) + (m_2 - m_1)v_(2x))/(m_1 + m_2) = (2m_1 v_(1x))/(m_1 + m_2)`,

здесь `v_(1x) = vcos  pi/6` - проекция скорости шайбы на ось `Ox` до соударе­ния, `v_(2x) = 0` - обруч до соударения покоился.

Из этих соотношений следует, что в системе отсчёта, связанной с обручем, проекция скорости шайбы на линию центров после соударения

`v_(1xsf"отн") = v_(1x)^' - v_(2x)^' =- v_(1x) =- vcos  pi/6`

просто изменила знак, а перпендикулярная линии центров составляющая, как было  показано, в рассматриваемом соударении  не изменяется. Следовательно, в системе, связанной с обручем, шайба отразится по закону «угол падения равен углу отражения», и минимальное расстояние от шайбы до центра обруча снова будет равно `R//2`. Искомое время

`tau = (R cos^(2)   pi/6)/|v_(1xsf"отн")| = cos  pi/6 R/v = sqrt3/2 R/v`.