Перевод термодинамической системы (например, порции идеального газа) из состояния `1` в состояние `2` можно осуществить разными способами. На рис. 12 показаны графики двух возможных процессов (`1-"а"-2` и `1-"в"-2`), позволяющих осуществить такой перевод. Изменение внутренней энергии системы в том и в другом случае одинаково (оно определяется положениями точек `1` и `2` на -диаграмме), а работа, совершённая системой над окружающими телами, различна (площадь фигур под графиками процессов `1-"а"-2` и `1-"в"-2` разная, площадь под графиком процесса `1-"в"-2` больше).
Следовательно, и количество теплоты, затраченное на перевод системы из состояния `1` в `2` ( $$ Q=\Delta U+{A}^{\text{'}}$$ ), будет разным.
Теплоёмкостью $$ C$$ термодинамической системы (тела) называют отношение бесконечно малого количества теплоты $$ \Delta Q$$, переданного системе, к изменению $$ \Delta T$$ его температуры, вызванного этим количеством теплоты.
$$ C={\displaystyle \frac{\Delta Q}{\Delta T}}$$ — теплоёмкость тела (системы).
Единицей измерения этой величины будет $$ \left[C\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{К}}}$$.
Численное значение теплоёмкости тела показывает, какое количество теплоты потребуется для изменения температуры всего тела на `1` градус по шкале Цельсия (Кельвина).
При расчётах чаще пользуются удельной теплоёмкостью (теплоёмкостью `1` кг вещества).
называют отношение теплоёмкости тела (системы) к массе этого тела (системы):
$$ {c}_{\mathrm{уд}}={\displaystyle \frac{C}{m}}={\displaystyle \frac{\Delta Q}{m· \Delta T}}$$ — удельная теплоёмкость тела (системы). |
(1) |
Единицей измерения этой величины будет $$ \left[c\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{кг}·\mathrm{К}}}$$.
называют отношение теплоёмкости тела (системы) к количеству вещества в этом теле (системе):
$$ {c}_{\mathrm{мол}}={\displaystyle \frac{C}{\nu }}={\displaystyle \frac{\Delta Q}{ \Delta T·\nu }}$$ — молярная теплоёмкость тела (системы). |
(2) |
Единицей измерения этой величины будет $$ \left[{c}_{\mathrm{мол}}\right]={\displaystyle \frac{1\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}$$.
Получим соотношение между удельной и молярной теплоёмкостями:
$$ {c}_{\mathrm{мол}}={\displaystyle \frac{Q}{ \Delta T·\frac{m}{M}}}={\displaystyle \frac{Q·M}{ \Delta T·m}}={c}_{\mathrm{уд}}·M$$ — соотношение между молярной и удельной теплоёмкостями |
(3) |
Теперь найдём молярную теплоёмкость идеального газа при изобарном и при изохорном процессах.
При изобарном процессе присутствуют и $$ \Delta U$$, и $$ {A}^{\text{'}}$$, следовательно:
$$ {c}_{p}={\displaystyle \frac{Q}{\nu · \Delta T}}={\displaystyle \frac{\Delta U+A\text{'}}{\nu · \Delta T}}={\displaystyle \frac{\Delta U}{\nu \Delta T}}+{\displaystyle \frac{A\text{'}}{\nu \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu \Delta T}}+{\displaystyle \frac{\nu R \Delta T}{\nu \Delta T}}={\displaystyle \frac{iR}{2}}+R=R{\displaystyle \frac{i+2}{2}}$$,
$${c}_{p}=R{\displaystyle \frac{i+2}{2}}$$ — молярная теплоёмкость газа при изобарном процессе.
При изохорном процессе работа не совершается, $$ {A}^{\text{'}}=0$$, следовательно:
$$ {c}_{V}={\displaystyle \frac{Q}{\nu \Delta T}}={\displaystyle \frac{\Delta U+{A}^{\text{'}}}{\nu \Delta T}}={\displaystyle \frac{\Delta U}{\nu \Delta T}}={\displaystyle \frac{\frac{i}{2}\nu R \Delta T}{\nu \Delta T}}={\displaystyle \frac{iR}{2}}$$
$$ {c}_{V}=R{\displaystyle \frac{i}{2}}$$ — молярная теплоёмкость газа при изохорном процессе.
Соотношение между $$ {c}_{V}$$ и $$ {c}_{р}$$ можно записать в двух формах:
1) $$ {c}_{p}={c}_{V}+R$$ — закон Майера, и
2) $$ \gamma ={\displaystyle \frac{{c}_{p}}{{c}_{V}}}$$ — коэффициент Пуассона.
Т. к. мы уже знаем, чему равно число степеней свободы у разных молекул, то можем вычислить и значения $$ {с}_{р}$$ и $$ \gamma $$:
|
формула
|
Одноатомные `(i = 3)`
|
Двухатомные `(i = 5)`
|
`c_p` |
`R((i+2)/2)`
|
`5/2 R`
|
`20,775 "Дж"/("моль"*"К")` |
`7/2 R` |
`29,085 "Дж"/("моль"*"К")` |
`gamma`
|
`(i+2)/i` |
`5/3`
|
`1,66667` |
`7/5`
|
`1,4` |
Воздух представляет собой смесь газов, преимущественно двухатомных азота и кислорода, потому для него эксперименты дают значение $$ \gamma \approx \mathrm{1,4}$$.
Для твёрдых тел теплоёмкости $$ {с}_{р}$$ и $$ {c}_{V}$$ будут почти одинаковыми. Это можно показать следующим образом. По определению $$ C={\displaystyle \frac{\Delta Q}{ \Delta T}}$$, но $$ \Delta Q= \Delta U+p\Delta V$$, тогда
$$ {C}_{p}={\displaystyle \frac{\Delta U+p\Delta V}{ \Delta T}}={\displaystyle \frac{\Delta U}{ \Delta T}}+{\displaystyle \frac{p\Delta V}{ \Delta T}}={C}_{V}+{\displaystyle \frac{p\Delta V}{ \Delta T}}$$.
При нагревании твёрдых или жидких тел изменение объёма составляет около $$ {10}^{-6}$$ первоначального объёма, поэтому вторым слагаемым можно пренебречь по сравнению с первым, что и позволяет говорить о равенстве $$ {c}_{p}={c}_{V}$$.
Для газов $$ \frac{ \Delta V}{V}$$ на два порядка больше, чем для твёрдых или жидких тел, потому пренебрегать вторым слагаемым нельзя, более того, оно будет составлять заметную долю теплоёмкости $$ {c}_{p}$$.