Автор
Плис Валерий Иванович 578 статей

§5. Сохранение импульса системы материальных точек

Из теоремы об изменении  импульса системы  материальных  точек `(Delta vecP_("c"))/(Delta t) = sum_i vecF_i` следует сохранение импульса или его проекций в следующих случаях:

если  `sum_i vecF_i = vec 0`, то `vecP_("c")` остаётся неизменным по величине и на­правлению;

если существует направление `x` такое, что `sum_i F_(i,x) = 0`, то `P_(c,x) = "const"`.  

Наконец, если на малом интервале времени внешние силы конечные и импульс этих сил за время действия во много раз меньше по вели­чине импульса системы `|sum_i vecF_i| Delta t < < |vecP_("c") (t)|`, то из равенства

`Delta vecP_("c") = vecP_("c") (t + Delta t) - vecP_("c") (t) = (sum_i vecF_i) Delta t`

следует `Delta vecP_("c") ~~ vec 0`, т. е. сохранение импульса на рассматриваемом интер­вале времени `vecP_("c") (t + Delta t) = vecP_("c") (t)`.

Пример 10

Артиллерист стреляет ядром массы `m` так, чтобы оно упало в неприятельском лагере. На вылетевшее из пушки ядро садится барон Мюнхгаузен, масса которого `5m`. Какую часть пути до неприятельского лагеря ему придётся идти пешком? 

Решение

Вы, конечно, догадались, что эта задача иллюстрирует последний из перечисленных случаев сохранения импульса системы. В процессе «посадки» барона на ядро на систему «ядро + барон» действуют внешние силы - это силы тяжести и силы сопротивления воздуха. Но барон столь ловок и устраивается на ядро столь быстро, что импульс этих конечных сил за время «посадки» барона на ядро значительно меньше по величине импульса `m vecv_0` ядра  непосредственно перед  «посадкой». Тогда скорость `vecv_0` ядра за мгновение до встречи со сказочным персонажем и скорость `vecv_1` системы «барон на ядре» связаны законом сохранения импульса системы

`m vecv_0 = 6m vecv_1`,

так что скорость ядра сразу после того, как Мюнхгаузен устроится на нём поудобнее, уменьшится в `6` раз. Следовательно, в такое же число раз уменьшатся: длительность полёта (равная удвоенному частному от деления  начальной вертикальной составляющей скорости на величину ускорения свободного падения)и горизонтальная составляющая скорости. Дальность полёта, равная произведению этих величин, уменьшится в `36` раз, тогда оставшиеся после благополучного приземления `(35)/(36)` расстояния до неприятельского лагеря, барону предстоит пройти пешком!

Пример 11

На гладкой горизонтальной поверхности лежит соломинка массой `M` и длиной  `L`. Жук массой `m` перемещается по соломинке с одного конца на другой.  На какое расстояние `S` переместится  соломинка?

Решение

Рассмотрим систему тел «жук + соломинка». На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса этой системы равно суммарному импульсу действующих на систему внешних сил: т. е. сил тяжести и силы нормальной реакции

`Delta vecP_("c") = M Delta vecv_1 + m Delta vecv_2 = ((M + m) vecg + vec N) Delta t`,

здесь `vecv_1` - скорость соломинки, `vecv_2` - скорость жука. Обе скорости определены в лабораторной системе отсчёта. Сумма сил тяжести и нормальной реакции  равна нулю. Тогда импульс системы  «жук + соломинка» в процессе движения остаётся постоянным, равным своему начальному значению:

`M vecv_1 + m vecv_2 = vec 0`.

Поскольку задано перемещение жука в системе отсчёта, связанной с соломинкой, обратимся к правилу сложения скоростей `vecv_2 = vecv_1 + vec u`, здесь `vec u` - скорость жука относительно соломинки. Перейдём в этом равенстве к проекциям на горизонтальную ось, получим `v_(2,x) = v_(1,x) + u_(x')`.

С учётом правила сложения скоростей закон сохранения импульса принимает вид `Mv_(1,x) + m (v_(1,x) + u_(x')) = 0`, т. е. в любой момент времени  

`v_(1,x) =- m/(M + m) u_(x')`.  

Тогда элементарные перемещения: `Delta x_1 = v_(1,x) Delta t` - соломинки относительно лабораторной системы отсчёта и `Delta x' = u_(x') Delta t` - жука относительно соломинки, связаны соотношением `Delta x_1 =- m/(M + m) Delta x'`.

Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос за­дачи 

`S = m/(m + M) L`.

Пример 12

Клин массой `2m` и углом наклона к горизонту `alpha (cos alpha = 2//3)` находится на гладкой горизонтальной поверхности стола (см. рис. 12). Через блок, укреплённый на вершине клина, перекинута лёгкая нить, связывающая грузы, массы которых равны `m` и `3m`. Груз массой `3m` может скользить вдоль вертикальной направляющей `AB`, закреплённой на клине. Этот груз удерживают неподвижно на расстоянии `H = 27 sf"см"` от стола, а затем отпускают. В результате грузы и клин движутся поступательно. На какое расстояние `S` сместится клин к мо­менту удара груза массой `3m` о стол? Массы блока и направляющей `AB` считайте пренебрежимо малыми.

                

Решение

Рассмотрим систему тел «клин + грузы» (рис. 13).

На каждом элементарном промежутке времени приращение `Delta vecP_("c")` импульса системы равно суммарному импульсу действующих на систему внешних сил: тяжести и нормальной реакции горизонтальной опоры

`Delta vecP_("c") = (6 m vec g + vec N) Delta t`. 

Проекции  сил  тяжести и нормальной  реакции на горизонтальную ось нулевые. Следовательно, в процессе движения горизонтальная состав­ляющая импульса системы «клин + грузы» остаётся постоянной, равной своему начальному значению - нулю:

`(2m + 3m) v_(x,sf"к") + mv_(x,sf"г") = 0`,

здесь `v_(x,sf"к")` - проекция скорости клина и груза массой `3m` на горизон­тальную ось, `v_(x,sf"г")` - проекция скорости груза массой `m` на эту же ось. В системе отсчёта, связанной с клином, модули любых элементарных перемещений грузов равны вследствие нерастяжимости нити. Следовательно, в этой системе модуль перемещения лёгкого груза в проекции на горизонтальную ось за время движения равен `H cos alpha`. Тогда воспользуемся результатами предыдущей задачи. По правилу сложения скоростей `vecv_("г") = vecv_("к") + vec u`, здесь `vec u` - скорость лёгкого груза в системе отсчёта, связанной с  клином. С учётом этого соотношения закон сохранения импульса принимает вид

`(2m + 3m) v_(x,sf"к") + m(v_(x,sf"к") + u_(x')) = 0`.

Отсюда находим связь проекций скорости

`v_(x,sf"к") = - m/(6m) u_(x') = - u_(x')/6`

и  элементарных перемещений:

`Delta x_sf"к" =- (Delta x')/6`,

где `Delta x_sf"к"` - перемещение клина относительно лабораторной системы, `Delta x'` - проекция перемеще­ния лёгкого груза на горизонтальную ось в системе отсчёта, связанной с клином. Суммируя элементарные перемещения по всему времени движения и переходя к абсолютным величинам, приходим к ответу на вопрос задачи

`S = (H cos alpha)/6 = (27*2)/(6*3) = 3 sf"см"`.

Пример 13

По клину массой `M`, находящемуся на гладкой горизонтальной плоскости, скользит шайба массой `m`. Гладкая наклонная плоскость клина составляет с горизонтом угол `alpha`.  Определите величину  `a_1` ускорения  клина.

Решение

Для определения ускорения клина рассмотрим движение каждого  из  тел. Силы,  приложенные к  телам,  указаны  на рис. 14.

          

Запишем второй закон Ньютона для клина `M veca_1 = M vec g + vec P + vec R` и для шайбы `m veca_2 = m vec g + vec N`.

Переходя к проекциям сил и ускорений на оси ЛСО с учётом `vec P =- vec N` получаем    

`Ma_(1x) = N sin alpha`,  `ma_(2x) =- N sin alpha`,  `ma_(2y) =- mg + N cos alpha`.

Скорость `vecv_2`  шайбы в ЛСО, скорость `vec u` шайбы относительно клина и скорость `vecv_1` клина связаны законом сложения скоростей  `vecv_2 = vecv_1 + vec u`. Дифференцируя это равенство по времени находим связь соответствующих ускорений `veca_2 = veca_1 + veca_("отн")`. Из треугольника ускорений (рис. 15) следует

`bbb"tg" alpha = (a_(2y))/(a_(2x) - a_(1x))`.

Подставляя в последнее равенство выражения для проекций ускорения шайбы

`a_(2x) =- M/m a_(1x)`   и   `a_(2y) =- g + a_(1x) M/m "ctg"  alpha`,

после несложных преобразований приходим к ответу на вопрос задачи

 `a_(1x) = 1/2 (m sin 2 alpha)/(M + m sin^2 alpha) g`.

Рассмотренные примеры подчёркивают важную роль законов сохранения.

Решение прямой задачи динамики, т. е. определение траектории по заданным силам и начальным условиям, упрощается в тех случаях, когда удаётся заменить уравнения Ньютона другими, эквивалентными им, но не содержащими ускорений. Эти уравнения, являющиеся математическим следствием уравнений Ньютона, и связывающие скорости (импульсы) точек с их координатами, называют законами сохранения. Проиллюстрируем это на примере задач о столкновениях частиц.