Автор
Плис Валерий Иванович 578 статей

§4. Импульс системы материальных точек. Теорема об изменении импульса системы материальных точек

Рассмотрим систему материальных точек массами `m_1`, `m_2``...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2``...`. Импульсом `vecP_("c")` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих  систему, `vecP_("c") = vecp_1 + vecp_2 + ...`.

Найдём скорость `(Delta vecP_("c"))/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку  действуют суммарной силой `vecF_1` внешние по отношению к системе тела и внутренняя сила `vecf_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vecF_2`, и внутренняя сила `vecf_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем

`(Delta vecP_("c"))/(Delta t) = (Delta vecp_1)/(Delta t) + (Delta vecp_2)/(Delta t) = (vecF_1 + vecf_(12)) + (vecF_2 + vecf_(21))`.

По третьему закону Ньютона `vecf_(12) + vecf_(21) = vec 0`,  и мы приходим к теореме об  изменении импульса системы  материальных  точек

`(Delta vecP_("c"))/(Delta t) = vecF_1 + vecF_2`,

скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.

Из приведённого доказательства следует, что третий закон Ньютона можно сформулировать и как требование сохранения импульса системы  взаимодействующих  тел,  если  нет  никаких других внешних сил. В этом - его более глубокое физическое содержание.

Пример 9

Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по  поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 9), с которыми клин действует на опору.


Решение

По третьему закону Ньютона искомые силы связаны с силой трения `vecR_1 =- vecF_("тр"` и силой нормальной реакции `vecR_2 =- vecN_("г")`, действующими на клин со стороны опоры (рис. 10). Силы `vec(F_sf"тр")` и `vec(N_sf"г")`, наряду с силами тяжести, являются внешними по отношению к системе «клин + брусок»  и  определяют скорость  изменения импульса этой системы.

          

Импульс `vecP_("c")` системы направлен по скорости бруска и по величине  равен  произведению массы бруска на его скорость `vecP_("c") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 11):

`(Delta vecp)/(Delta t) = m vec g + vec N + vec(f_sf"тр"`.

Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N`, получаем

`(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`,  `(Delta p_x)/(Delta t) = mg(sin alpha - mu cos alpha)`.

По теореме об изменении импульса системы «клин + брусок»

`(Delta vecP_("c"))/(Delta t) = M vec g + m vec g + vecN_("г") + vecF_("тр")`.

Переходя в последнем равенстве к проекциям на горизонтальное  и вертикальное  направления с учётом 

Pc,x~=pxcosαP_{c,\widetilde x}=p_x\cos\alpha,  Pc,y~=-pxsinαP_{c,\widetilde y}=-p_x\sin\alpha,

получаем

Pc,x~t=pxcosαt=mgsinα-μcosαcosα=Fтр\dfrac{\triangle P_{c,\widetilde x}}{\triangle t}=\dfrac{\triangle\left(p_x\cos\alpha\right)}{\triangle t}=mg\left(\sin\alpha-\mu\cos\alpha\right)\cos\alpha=F_\mathrm{тр},

Pc,y~t=-pxsinαt=-mgsinα-μcosαsinα=-M+mg+Nг\dfrac{\triangle P_{c,\widetilde y}}{\triangle t}=\dfrac{\triangle\left(-p_x\sin\alpha\right)}{\triangle t}=-mg\left(\sin\alpha-\mu\cos\alpha\right)\sin\alpha=-\left(M+m\right)g+N_\mathrm г.

Отсюда находим искомые силы

`R_1 = F_sf"тр" = mg(sin alpha - mu cos alpha) cos alpha`,

`R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha) sin alpha`.