Состояния, в которых может находиться то или иное вещество, можно разделить на так называемые агрегатные состояния: твёрдое, жидкое, газообразное. У некоторых веществ нет резкой границы между различными агрегатными состояниями. Например, при нагревании стекла (или другого аморфного вещества) происходит постепенное его размягчение, и невозможно установить момент перехода из твёрдого состояния в жидкое.
Вещество может переходить из одного состояния в другое. Если при этом меняется агрегатное состояние вещества или скачком меняются некоторые характеристики и физические свойства вещества (объём, плотность, теплопроводность, теплоёмкость и др.), то говорят, что произошёл фазовый переход – вещество перешло из одной фазы в другую.
называется физически однородная часть вещества, отделённая от других частей границей раздела.
Пусть в сосуде заключена вода, над которой находится смесь воздуха и водяных паров. Эта система является двухфазной, состоящей из жидкой фазы и газообразной. Можно сделать систему и с двумя различными жидкими фазами: капелька ртути в сосуде с водой. Капельки тумана в воздухе образуют с ним двухфазную систему.
Условия равновесия фаз для многокомпонентных веществ, т. е. веществ, состоящих из однородной смеси нескольких сортов молекул, достаточно сложны. Например, для смеси вода – спирт газообразная и жидкая фазы этой смеси при равновесии имеют различные концентрации своих компонент, зависящие от давления и температуры. Ниже будут рассмотрены фазовые превращения только для однокомпонентных веществ.
При заданном давлении существует вполне определённая температура, при которой две фазы однокомпонентного вещества находятся в равновесии и могут переходить друг в друга при этой температуре. Пока одна фаза полностью не перейдёт в другую, температура будет оставаться постоянной, несмотря на подвод или отвод тепла. Поясним это на примерах.
Рассмотрим двухфазную систему вода – пар, находящуюся в замкнутом сосуде. При давлении $$ {p}_{0}=1 атм\approx {10}^{5} \mathrm{Па}$$ равновесие между паром и водой наступит при `100^@"C"`. Подвод к системе тепла вызывает кипение – переход жидкости в газ при постоянной температуре. Отвод от системы тепла вызывает конденсацию – переход пара в жидкость. При давлении $$ \mathrm{0,58}{p}_{0}$$ (почти вдвое меньше нормального атмосферного) равновесие между паром и водой наступает при `85^@"C"`. При давлении $$ 2{p}_{0}$$ равновесие фаз достигается при температуре `~~120^@"C"` (такие условия в скороварке).
Другой пример. Фазовое равновесие между льдом и водой при внешнем давлении $$ {p}_{0}=1 \mathrm{атм}$$ осуществляется, как известно, при `0^@"C"`. Увеличение внешнего давления на одну атмосферу понижает температуру фазового перехода на `0,007^@"C"`. Это значит, что температура плавления льда понизится на эту же незначительную величину.
Фазовые переходы для однокомпонентного вещества, сопровождающиеся переходом из одного агрегатного состояния в другое, идут с поглощением или выделением тепла. К ним относятся плавление и кристаллизация, испарение и конденсация. Причём, если при переходе из одной фазы в другую тепло выделяется, то при обратном переходе поглощается такое же количество теплоты.
Чтобы расплавить кристаллическое тело массой $$ m$$, надо подвести количество теплоты
Коэффициент пропорциональности $$ \lambda $$ называется удельной теплотой плавления. Вообще говоря, $$ \lambda $$ зависит от той температуры, при которой происходит фазовый переход (температура плавления). Во многих реальных ситуациях этой зависимостью можно пренебречь.
Для превращения в пар жидкости массой `m` надо подвести количество теплоты
Коэффициент пропорциональности $$ r$$ называется удельной теплотой парообразования. $$ r$$ зависит от температуры кипения, т. е. от той температуры, при которой осуществляется фазовое равновесие жидкость – пар для заданного давления.
Значения $$ \lambda $$ и $$ r$$ для разных веществ даются в таблицах обычно для тех температур фазовых переходов, которые соответствуют нормальному атмосферному давлению. При этом в величины $$ \lambda $$ и особенно $$ r$$ входит не только изменение внутренней энергии вещества при переходе одной фазы в другую, но и работа этого вещества над внешними телами при фазовом переходе! Например, удельная теплота парообразования воды при `100^@"C"` и $$ p\approx {10}^{5} \mathrm{Па}$$ на `9//10` состоит из изменения внутренней энергии вода - пар и на `1//10` (чуть меньше) из работы, которую совершает расширяющийся пар над окружающими телами.
В латунном калориметре массой $$ {m}_{1}=200 \mathrm{г}$$ находится кусок льда массой $$ {m}_{2}=100 \mathrm{г}$$ при температуре `t_1=-10^@"C"`. Сколько пара, имеющего температуру `t_2=100^@"C"`, необходимо впустить в калориметр, чтобы образовавшаяся вода имела температуру `40^@"C"`?
Удельные теплоёмкости латуни, льда и воды $$ {c}_{1}=\mathrm{0,4}·{10}^{3 } \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$,
$$ {c}_{2}=\mathrm{2,1}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$ ,
$$ {c}_{3}=\mathrm{4,19}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$ соответственно; удельная теплота парообразования воды `r=22,6*10^5 "Дж"//"кг"`;
удельная теплота плавления льда $$ \lambda =\mathrm{33,6}·{10}^{4} \mathrm{Дж}/\mathrm{кг}$$
При конденсации пара массой $$ m$$ при `100^@"C"` ($$ {T}_{2}=373 \mathrm{К}$$) выделяется количество теплоты $$ {Q}_{1}=rm$$. При охлаждении получившейся воды от $$ {T}_{2}=373 \mathrm{К}$$ до $$ \theta =313 К$$ `(40^@"C")` выделяется количество теплоты $$ {Q}_{2}={c}_{3}m({T}_{2}-\theta ).$$
При нагревании льда от $$ {T}_{1}=263 \mathrm{К}$$ `(-10^@"C")` до $$ {T}_{0}=273 \mathrm{К}$$ `(0^@"C")` поглощается количество теплоты $$ {Q}_{3}={c}_{2}{m}_{2}({T}_{0}-{T}_{1})$$. При плавлении льда поглощается количество теплоты $$ {Q}_{4}=\lambda {m}_{2}$$. При нагревании получившейся воды от $$ {T}_{0}$$ до $$ \theta $$ поглощается количество теплоты $$ {Q}_{5}={c}_{3}{m}_{2}(\theta -{T}_{0})$$. Для нагревания калориметра от $$ {T}_{1} $$ до $$ \theta $$ требуется количество теплоты $$ {Q}_{6}={c}_{1}{m}_{1}(\theta -{T}_{1})$$. По закону сохранения энергии
$$ {Q}_{1}+{Q}_{2}={Q}_{3}+{Q}_{4}+{Q}_{5}+{Q}_{6}$$, или
$$ rm+{c}_{3}m({T}_{2}-\theta )={c}_{2}{m}_{2}({T}_{0}-{T}_{1})+\lambda {m}_{2}+{c}_{3}{m}_{2}(\theta -{T}_{0})+{c}_{1}{m}_{1}(\theta -{T}_{1})$$.
Отсюда $$ m={\displaystyle \frac{{c}_{2}{m}_{2}({T}_{0}-{T}_{1})+\lambda {m}_{2}+{c}_{3}{m}_{2}(\theta -{T}_{0})+{c}_{1}{m}_{1}(\theta -{T}_{1})}{r+{c}_{3}({T}_{2}-\theta )}}\approx $$
$$ \approx 22·{10}^{-3} \mathrm{кг}=22 \mathrm{г}$$.