§2. Задачи о делении отрезка. Теорема Менелая

Задача о «делении отрезка», как правило, решаются дополнительным построением – проведением прямой, параллельной рассекающей, и использованием подобия или теоремы о пересечении сторон угла параллельными прямыми. Общий подход к решению таких задач даёт теорема Менелая (далее напомним формулировку и доказательство, в задании 9-го класса это уже было сделано).

Задача 7

Точка $$ D$$  лежит на стороне $$ BC$$, точка $$ K$$ - на стороне $$ AB$$ треугольника  $$ ABC$$, прямые $$ AD$$ и $$ CK$$ пересекаются в точке $$ O$$ (рис. 15). Найти отношение  $$ AO:OD$$, если $$ AK:KB=1:3$$ и $$ BD:DC=2:3$$.  

Рис. 15
Решение

Расставим на рисунке данные о делении  сторон.  Чтобы  решение стало  более  понятным,  сделаем  ещё  один  рисунок  (рис. 15а),  на   нём проведём $$ DS\left|\right|CK$$.    

Рассматриваем треугольник $$ KBC$$. Из `DS``||``CK`$$ $$по утверждению  $$ 2°$$

(второй признак подобия треугольников) следует $$ KS:KB=CD:CB$$, откуда $$ KS={\displaystyle \frac{3}{5}}·3x={\displaystyle \frac{9}{5}}x$$. (Ставим это на рисунке). На этом этапе удобно сделать ещё один рисунок (рис. 15б), либо на рисунке 15а провести прямую `AD` и отметить точку  $$ O$$.

В треугольнике $$ ASD$$ по построению $$ SD\left|\right|KO$$, По утверждению $$ 2°$$ имеем  $$ AO:OD=AK:KS$$, откуда следует $$ AO:OD=5:9$$

Рис. 15a Рис. 15б


теорема (менелая) о треугольнике и секущей

Точки `A_1` и `C_1`, расположенные на сторонах `BC` и `AB` треугольника `ABC`, и точка `B_1`, расположенная на продолжении стороны `AC` за точку `C`, лежат  на  одной  прямой   тогда  и только тогда, когда имеет  место равенство: 

$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1$$.                            (`**`)

Доказательство
1. Пусть точки $$ {B}_{1},{A}_{1},{C}_{1}$$ лежат на одной прямой. 

  Проводим $$ CK\left|\right|AB$$ (рис. 16а):

$$\begin{array}{l}\left.\triangle A_1CK\sim\triangle A_1BC_1\right|\Rightarrow\dfrac{CK}{C_1B}=\dfrac{A_1C}{BA_1};\\\left.\triangle B_1AC_1\sim\triangle B_1CK\right|\Rightarrow\dfrac{AC_1}{CK}=\dfrac{B_1A}{B_1C}.\end{array}$$                                    

Почленно перемножив, получим  

$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}={\displaystyle \frac{{A}_{1}C}{B{A}_{1}}}·{\displaystyle \frac{{B}_{1}A}{C{B}_{1}}}$$,

откуда и следует

$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1$$ 

(стрелочки на рис. 16а показывают последовательность взятия отрезков, движение начинается в точке `A` и в ней же заканчивается).

Рис. 16а Рис. 16б

2. Пусть имеет место равенство (`**`). Через две точки $$ {B}_{1}$$ и $$ {A}_{1}$$ проводим   прямую,   точку  пересечения    с   отрезком $$ AB$$ обозначаем $$ {C}_{2}$$ (рис. 16б). Точки  $$ {A}_{1},{B}_{1}$$ и $$ {C}_{2}$$  лежат на одной прямой, по доказанному имеет место 

$$ {\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}·{\displaystyle \frac{B{A}_{1}}{{A}_{1}C}}·{\displaystyle \frac{C{B}_{1}}{{B}_{1}A}}=1.$$

Сравнивая с равенством (`**`), устанавливаем, что $$ {\displaystyle \frac{A{C}_{2}}{{C}_{2}B}}={\displaystyle \frac{A{C}_{1}}{{C}_{1}B}}$$ и показываем, что точки $$ {C}_{2}$$ и $$ {C}_{1}$$ совпадают, т. к. делят отрезок $$ AB$$ на равные отрезки. 

Применим теорему Менелая к решению примера 7 (см. рис. 15): рассматриваем треугольник $$ BAD$$ и секущую $$ CK$$ (она определяет три точки: $$ K,O,C$$ ). Имеем: $$ {\displaystyle \frac{BK}{KA}}·{\displaystyle \frac{AO}{OD}}·{\displaystyle \frac{DC}{CB}}=1$$,

т. е. $$ {\displaystyle \frac{3x}{x}}·{\displaystyle \frac{AO}{OD}}·{\displaystyle \frac{3y}{5y}}=1$$ откуда $$ {\displaystyle \frac{AO}{OD}}={\displaystyle \frac{5}{9}}$$.

Дополнение

Если при тех же условиях задачи 7 требуется определить, какую часть площади треугольника составляет, например, площадь четырёхугольника $$ KODB$$ то полезно сначала решить задачу о «делении отрезка» и найти, например, $$ AO:OD=5:9$$, а затем использовать тот факт, что площади треугольников с одинаковыми высотами относятся как длины их оснований:

$$ {S}_{ABC}=S; {S}_{ADC}={\displaystyle \frac{3}{5}}S$$ $$ ($$ т. к. $$ DC={\displaystyle \frac{3}{5}}BC$$$$ )$$;

$$ {S}_{OCD}={\displaystyle \frac{9}{14}}{S}_{ADC}={\displaystyle \frac{9}{14}}\left({\displaystyle \frac{3}{5}}S\right)={\displaystyle \frac{27}{70}}S$$ $$ ($$ т. к. $$ OD={\displaystyle \frac{9}{14}}AD$$$$ )$$;

$$ {S}_{KCB}={\displaystyle \frac{3}{4}}S$$ $$ ($$ т. к. $$ BK={\displaystyle \frac{3}{4}}AB$$$$ )$$, поэтому

$$ {S}_{KODB}={S}_{KCB}-{S}_{OCD}={\displaystyle \frac{3}{4}}S-{\displaystyle \frac{27}{70}}S={\displaystyle \frac{51}{140}}S$$.