Автор
Чивилев Виктор Иванович 1267 статей

§ 17. Последовательное и параллельное соединение источников

При последовательном соединении источников общая ЭДС равна алгебраической сумме ЭДС отдельных источников, общее внутреннее сопротивление равно сумме внутренних сопротивлений отдельных источников. Для определения знака ЭДС каждого источника нужно выбрать положительное направление движения на участке с этим источником. ЭДС источника берётся со знаком `«+»`, если направление действия ЭДС совпадает с выбранным направлением. В противном случае ставится знак `«-»`.

При параллельном соединении источников с одинаковыми ЭДС и возможно различными внутренними сопротивлениями общая ЭДС (ЭДС батареи) равна ЭДС одного источника. Внутреннее сопротивление батареи рассчитывается как при параллельном соединении проводников с сопротивлениями, равными внутренним сопротивлениям источников.
При параллельном соединении источников с различными ЭДС выражение для ЭДС батареи усложняется и здесь не приводится.

Задача 17.1

В схеме на рис. 17.1 $$ {\mathcal{E}}_{1}=12$$ В, $$ {\mathcal{E}}_{2}=3$$ В, $$ {r}_{1}=1$$ Ом, $$ {r}_{2}=2$$ Ом, $$ R=6$$ Ом.

Рис. 17.1

Найти напряжения на зажимах источников, т. е. разность потенциалов $$ {\varphi }_{A}-{\varphi }_{B}$$ и $$ {\varphi }_{B}-{\varphi }_{D}$$.

Решение

ЭДС батареи последовательно соединённых источников:

$$ \mathcal{E}={\mathcal{E}}_{1}-{\mathcal{E}}_{2}=9$$ B.

Причём, полярность батареи совпадает с полярностью источника $$ {\mathcal{E}}_{1}$$ т. к. $$ {\mathcal{E}}_{1}>{\mathcal{E}}_{2}$$.

Ток по закону Ома для замкнутой цепи $$ I=\mathcal{E}/(R+{r}_{1}+{r}_{2})=1$$ A. По закону Ома для участков цепи `AB` и `BD`:

$$ {\varphi }_{A}-{\varphi }_{B}+{\mathcal{E}}_{1}=I{r}_{1,}$$, $$ {\varphi }_{B}-{\varphi }_{D}-{\mathcal{E}}_{2}=I{r}_{2}$$.

Отсюда $$ {\varphi }_{A}-{\varphi }_{B}=I{r}_{1}-{\mathcal{E}}_{1}=-11$$ B, $$ {\varphi }_{B}-{\varphi }_{D}=I{r}_{2}+{\mathcal{E}}_{2}=5$$ B.

Задача 17.2

Найти ток через резистор с сопротивлением $$ R$$ в схеме на рис. 17.2.

Решение
Рис. 17.2 Рис. 17.3

Между точками `A` и `B` имеем параллельное соединение источников. На рис. 17.3 показана эквивалентная схема, для которой $$ {\mathcal{E}}_{1}=\mathcal{E}$$, $$ {r}_{1}=r·2r/\left(r+2r\right)=2r/3$$. Общая ЭДС и внутреннее сопротивление последовательно соединённых источников с ЭДС $$ 3\mathcal{E}$$ и $$ {\mathcal{E}}_{1}$$:

$$ {\mathcal{E}}_{0}=3\mathcal{E}-{\mathcal{E}}_{1}=3\mathcal{E}-\mathcal{E}=2\mathcal{E}$$,

$$ {r}_{0}=3r+{r}_{1}=3r+2r/3=11r/3$$.

Ток $$ I={\displaystyle \frac{{\mathcal{E}}_{0}}{R+{r}_{0}}}={\displaystyle \frac{6\mathcal{E}}{3R+11r}}$$.