Автор
Чивилев Виктор Иванович 1199 статей

§ 4. Поле бесконечной равномерно заряженной плоскости

Пусть поверхностная плотность заряда (заряд единицы поверхности) равна σ\sigma. Силовые линии перпендикулярны плоскости, густота их везде одинакова.
Это следует из соображений симметрии. На рис. 4.1 показано поле для σ>0.\sigma>0. 
Напряжённость поля по каждую сторону плоскости одна и та же, независимо от расстояния до плоскости (поле однородно). Приведём без доказательства выражение для модуля напряжённости электрического поля по любую сторону плоскости:

E=k2πσ=σ2ε0E=k2\pi\left|\sigma\right|=\dfrac{\left|\sigma\right|}{2\varepsilon_0}. (4.1)


Эту формулу можно обобщить. Пусть σ\sigma произвольного знака. Направим ось `x` перпендикулярно плоскости (рис. 4.2). Можно убедиться непосредственной проверкой, что при x>0 Ex=σ2ε0x>0\;E_x=\dfrac\sigma{2\varepsilon_0}, при x<0 Ex=-σ2ε0x<0\;E_x=\dfrac{-\sigma}{2\varepsilon_0} при любом знаке σ\sigma. Здесь ExE_x проекция напряжённости на ось `x`. Для запоминания обобщённых формул можно формально считать σ>0\sigma>0 и писать выражение для ExE_x при x>0x>0 и x<0x<0.  Полученные формулы окажутся  справедливыми и при σ<0\sigma<0. Обобщение полезно тем, что нет знака модуля.

Рис. 4.1 Рис. 4.2


Задача 4.1

Равномерно заряженные пластины параллельны и находятся на расстоянии друг от друга много меньшем их размеров. Найти плотности зарядов σ1\sigma_1 и σ2\sigma_2 на пластинах, зная, что напряжённость поля в точках `A` и `B` вблизи пластин EA= 6000E_A = 6000 Н/Кл, EB=2000E_B = 2000 Н/Кл (рис. 4.3).

Решение

Направим ось `x` на рис. 4.3 перпендикулярно пластинам, от первой ко второй. В любой точке по принципу суперпозиции полей напряжённость E=E1+E2\overrightarrow E=\overrightarrow{E_1}+\overrightarrow{E_2},  где E1, E2\overrightarrow{E_1},\;\overrightarrow{E_2} - напряжённости полей, созданных первой и второй пластинами. Запишем последнее равенство в проекциях на ось `x`:

Ex=E1x+E2xE_x=E_{1x}+E_{2x}.

Это равенство справедливо для любой точки. Для точек `A` и `B` оно имеет более конкретный вид:

Для т. A: EA=σ12ε0-σ22ε0A:\;E_A=\dfrac{\sigma_1}{2\varepsilon_0}-\dfrac{\sigma_2}{2\varepsilon_0},

Для т. B: EB=σ12ε0+σ22ε0B:\;E_B=\dfrac{\sigma_1}{2\varepsilon_0}+\dfrac{\sigma_2}{2\varepsilon_0}.

Рис. 4.3

Решая систему из последних двух уравнений, находим:

σ1=ε0(EA+EB)=7.08·10-8Кл/м2, σ2=ε0(EA-EB)=-3.54·10-8Кл/м2.\begin{array}{l}\sigma_1=\varepsilon_0(E_A+E_B)=7.08\cdot10^{-8}\mathrm{Кл}/\mathrm м^2,\;\\\sigma_2=\varepsilon_0(E_A-E_B)=-3.54\cdot10^{-8}\mathrm{Кл}/\mathrm м^2.\end{array}

Заметим, что для решения задачи с использованием для напряжённости формулы с модулем пришлось бы перебрать возможные случаи для знаков зарядов пластин, поскольку знаки заранее неизвестны. Это усложнило бы решение. Попробуйте решить задачу вторым способом и сравните его с первым.