Автор
Чивилев Виктор Иванович 1229 статей

§3. Внутренняя энергия

Возьмём макроскопическое тело и перейдём в систему отсчёта, связанную с этим телом. В состав внутренней энергии тела входят кинетическая энергия поступательного движения и вращательного движения молекул, энергия колебательного движения атомов в молекулах, потенциальная энергия взаимодействия молекул друг с другом, энергия электронов в атомах, внутриядерная энергия и др.

Будем рассматривать явления, в которых молекулы не изменяют своего строения, а температура ещё не так велика, чтобы была необходимость учитывать энергию колебаний атомов в молекуле. При таких явлениях изменение внутренней энергии тела происходит только за счёт изменения кинетической энергии молекул и потенциальной энергии их взаимодействия друг с другом. Для общего баланса энергии имеет значение не сама внутренняя энергия, а её изменение. Поэтому под внутренней энергией макроскопического тела можно подразумевать только сумму кинетической энергии теплового движения всех молекул и потенциальной энергии их взаимодействия.

Внутренняя энергия есть функция состояния тела, и определяется макроскопическими параметрами, характеризующими состояние термодинамического равновесия тела.

Потенциальная энергия взаимодействия молекул идеального газа принимается равной нулю. Поэтому внутренняя энергия идеального газа состоит только из кинетической энергии поступательного и вращательного движения молекул и зависит только от температуры. Внутренняя энергия идеального газа от объёма газа не зависит, поскольку расстояние между молекулами не влияет на внутреннюю энергию.

Потенциальная энергия взаимодействия молекул реальных газов, жидкостей и твёрдых тел зависит от расстояния между молекулами. В этом случае внутренняя энергия зависит не только от температуры, но и от объёма.

Найдём выражения для внутренней энергии одноатомного идеального газа. Средняя кинетическая энергия одной молекулы этого газа даётся выражением (2). Поскольку в газе массой `m` и молярной массой `mu` содержится ν=mμ\nu=\dfrac m\mu молей и mμNА\dfrac m\mu N_А молекул, то сумма кинетической энергии всех молекул, содержащихся в массе `m` газа, равна

mμNА·32kT=32mμRT\dfrac m\mu N_А\cdot\dfrac32kT=\dfrac32\dfrac m\mu RT

где R=kNАR=kN_А – универсальная газовая постоянная.

Итак, внутренняя энергия одноатомного идеального газа

U=32mμRT=32νRTU=\dfrac32\dfrac m\mu RT=\dfrac32\nu RT

Анализ этой формулы подтверждает высказанное выше утверждение, что внутренняя энергия некоторой массы конкретного идеального газа зависит только от температуры.