Под идеальным газом понимают газ, состоящий из молекул, удовлетворяющих двум условиям:
1) размеры молекул малы по сравнению со средним расстоянием между ними;
2) силы притяжения и отталкивания между молекулами проявляются только на расстояниях между ними, сравнимых с размерами молекул.
Молекулы идеального газа могут состоять из одного атома, двух и большего число атомов.
Для простейшей модели одноатомного идеального газа, представляющей собой совокупность маленьких твёрдых шариков, упруго соударяющихся друг с другом и со стенками сосуда, можно вывести, используя законы механики Ньютона,
основное уравнение молекулярно-кинетической теории идеального газа:
`p=2/3n barE`. (1)
Здесь `p` – давление газа, $$ n$$ – концентрация молекул (число молекул в единице объёма), `barE` - средняя кинетическая энергия поступательного движения одной молекулы (сумма кинетической энергии поступательного движения всех молекул в сосуде, делённая на число молекул в сосуде). Вывод этого уравнения дан в школьном учебнике.
Уравнение (1) оказывается справедливым и для многоатомного идеального газа, молекулы которого могут вращаться и обладать, поэтому, кинетической энергией вращения. Полная кинетическая энергия много-атомной молекулы складывается из кинетической энергии поступательного движения $$ {\displaystyle \frac{E={m}_{0}{v}^{2}}{2}}$$ ($$ {m}_{0}$$ - масса молекулы, $$ v$$ - скорость центра масс молекулы) и кинетической энергии вращения. В случае многоатомного идеального газа в (1) под `barE` подразумевается только средняя кинетическая энергия поступательного движения молекулы: $$ {\displaystyle \frac{\overline{E}={m}_{0}\overline{{v}^{2}}}{2}}$$ где $$ \overline{{v}^{2}}$$ - среднее значение квадрата скорости молекулы.
Пусть есть смесь нескольких идеальных газов. Для каждого газа можно записать уравнение $$ {p}_{i}={\displaystyle \frac{2}{3}}{n}_{i}{\overline{E}}_{i}$$, где $$ {n}_{i}$$ концентрация молекул - $$ i$$-го газа, $$ {p}_{i}$$ - парциальное давление этого газа (давление при мысленном удалении из сосуда молекул других газов). Поскольку давление на стенку сосуда обусловлено ударами о неё молекул, то общее давление смеси идеальных газов равно сумме парциальных давлений отдельных газов:
Температуру можно ввести разными способами. Не останавливаясь на них, отметим, что у идеального газа средняя кинетическая энергия поступательного движения молекул `barE` связана с температурой $$ T$$ соотношением:
$$ \overline{E}={\displaystyle \frac{3}{2}}kT,$$ (2)
где $$ k=\mathrm{1,38}·{10}^{-23 }$$ Дж/К - постоянная Больцмана. При этом мы считаем, что движение молекул описывается законами механики Ньютона. В системе СИ температурас $$ T$$ измеряется в градусах Кельвина (К). В быту температуру часто измеряют в градусах Цельсия ($$ {}^{\circ }\mathrm{C}$$). Температуры, измеряемые по шкале Кельвина $$ T$$ и по шкале Цельсия $$ t$$ связаны численно соотношением: $$ T=t+273$$.
Итак, температура является мерой средней кинетической энергии поступательного движения молекул: $$ {m}_{0}\overline{{v}^{2}}/2=\frac{3}{2}kT$$. Величина
$$ {v}_{\mathrm{кв}}=\sqrt{\overline{{v}^{2}}}=\sqrt{{\displaystyle \frac{3kT}{{m}_{0}}}}$$ (3)
называется средней квадратичной скоростью. Ясно, что $$ {v}_{\mathrm{кв}}=\overline{{v}^{2}}$$. Она характеризует скорость хаотического движения молекул, называемого ещё тепловым движением. Интересно заметить, что средняя квадратичная скорость молекул идеального газа почти не отличается от средней арифметической скорости молекул $$ {v}_{\mathrm{ср}}$$ (среднее значение модуля скорости): $$ {v}_{\mathrm{кв}}\approx \mathrm{1,085}{v}_{\mathrm{ср}}$$. Поэтому под средней скоростью теплового движения молекул идеального газа можно понимать любую из этих скоростей.