
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
В заключении остановимся на ещё не обсуждавшийся в этом задании вопросе о роли рисунка в решении геометрических задач.
Некоторые учащиеся и абитуриенты ограничиваются небрежным мелким рисунком, на котором даже трудно разобрать, какие обозначения к чему относятся, какие прямые перпендикулярны или параллельны, в каких точках имеет место касание и т. п. Кое-кому из них всё же удаётся верно решить задачу, но в большинстве случаев, особенно в задачах, требующих ряда шагов рассуждений и вычислений, такой рисунок скорее мешает решению, а не способствует успеху.
Рисунок в геометрической задаче – это удобный для восприятия наглядный способ записи условий задачи, фиксирующий и удерживающий внимание решающего, он даёт повод к размышлению и может стать помощником в решении задачи, подсказать правильный путь в поисках решения. (Посмотрите, например, на рис. 27, 28, 29). Именно поэтому к построению рисунка полезно относиться вдумчиво. Сначала, чтобы понять задачу, её условия переводят на геометрический язык: делают от руки небольшой предварительный рисунок и отмечают на нём (если таковые есть) равные углы, пропорциональность отрезков, перпендикулярность и т. п. И лишь обдумав, как надо изменить рисунок, чтобы он соответствовал условиям задачи, делают аккуратный и достаточно большой рисунок, чтобы на нём уместились все введённые обозначения углов, отрезков и данные задачи. В ряде случаев «хороший» рисунок получается не с первой попытки и при его построении уже начинается процесс решения задачи, так как используются определения и известные геометрические факты относительно входящих в условие задачи элементов геометрической конфигурации.
Когда словами записываются геометрические свойства входящих в задачу элементов, устанавливаются метрические соотношения типа и т. п., проводятся некоторые вычисления, то охватить их взглядом, увидеть в целом, сделать нужный вывод бывает совсем непросто, а вот увидеть на рисунке след собственных рассуждений и не терять этого из виду обычно удаётся.
Мы говорим о работе с рисунком в процессе поиска решения. При окончательном изложении решения задачи каждое заключение должно быть обосновано (чаще всего ссылками на известные теоремы курса, реже – дополнительным доказательством). Сам по себе рисунок, даже самый аккуратный, выполненный циркулем и линейкой, ничего не доказывает, всё, что «увидено» из чертежа, должно иметь логическое обоснование.
И ещё одно замечание. Если задача не получается, «упирается», не достаёт ещё какого-то одного соотношения, связи элементов – вернитесь к условию задачи и вновь обсудите каждый входящий в него геометрический элемент. Скорее всего, вами использованы не все их свойства, сделаны не все возможные выводы.
Поясним наши рассуждения о рисунке и работе с ним примерами решения двух задач олимпиад МФТИ.
Продолжения медиан $$ AE$$ и $$ CF$$ треугольника $$ ABC$$ (рис. 32) пересекают описанную около него окружность в точках $$ D$$ и $$ N$$ соответственно так, что $$ AD:AE=2:1$$ и $$ CN:CF=4:3.$$ Найти углы треугольника.
![]() |
Рис. 32 |
Делаем предварительный рисунок (кстати, его удобнее всего рисовать, начиная с окружности), отмечаем, что (это следует из условия $$ AD=2AE$$). Две хорды $$ BC$$ и $$ AD,$$ пересекаясь, делятся пополам. По свойству пересекающихся хорд $$ AE·DE=BE·CE$$ откуда следует, что $$ AE=BE=DE=CE$$. Точка $$ E$$ одинаково удалена от точек `A`, `B`, `D` и `C` окружности, значит точка $$ E$$ - центр окружности. Отсюда следует, что $$ BC$$ и $$ AD$$ - диаметры, и - прямой (опирается на диаметр). Поскольку далее должна рассматриваться медиана $$ AE,$$ а нами установлено, что $$ AE=DE=BE=CE,$$ то удобно ввести обозначение $$ AE=R.$$
![]() |
Рис. 33 |
Обсудим следующие условия задачи: $$ FN={\displaystyle \frac{1}{3}}FC.$$ Обозначим $$ FN=x,$$ тогда $$ FC=3x.$$ Наконец обратим внимание, что в задаче есть две медианы треугольника, значит надо воспользоваться свойством медиан: пересекаясь, они делятся в отношении `2:1`, считая от вершины. Итак, если обозначить через $$ O$$ точку пересечения медиан, то
$$ AO={\displaystyle \frac{2}{3}}R, CO=2x, OF=x.$$
Выполняем хороший большой рисунок с учётом всех установленных фактов. Посмотрим внимательно на рис. 33 и подумаем, может быть, еще что-то можно установить? Да! Хорда $$ CN,$$ пересекая диаметр $$ AD,$$ делится пополам, значит Отразим и этот последний факт.
Теперь решение.
1. По свойству пересекающихся хорд:
$$ AO·OD=CO·ON$$, т. е. $$ {\displaystyle \frac{2}{3}}R\frac{4}{3}R=4{x}^{2}$$ откуда $$ {x}^{2}=\frac{2}{9}{R}^{2}$$.
2. Из прямоугольного треугольника $$ COA$$ по теореме Пифагора:
$$ AC=\sqrt{{\left(2x\right)}^{2}+{\left(\frac{2}{3}R\right)}^{2}}={\displaystyle \frac{2}{\sqrt{3}}}R$$.
3. Из прямоугольного треугольника $$ ABC$$ находим:
$$ \mathrm{sin}B={\displaystyle \frac{AC}{BC}}={\displaystyle \frac{1}{\sqrt{3}}}$$.
$$ \angle A={\displaystyle \frac{\mathrm{\pi }}{2}}$$, $$ \angle B=\mathrm{arcsin}{\displaystyle \frac{1}{\sqrt{3}}}$$, $$ \angle C={\displaystyle \frac{\mathrm{\pi }}{2}}-\mathrm{arcsin}{\displaystyle \frac{1}{\sqrt{3}}}$$.
Длина стороны ромба $$ ABCD$$ равна `4`. Расстояние между центрами окружностей, описанных около треугольников $$ ABD$$ и $$ ACD,$$ равно `3`. Найти радиусы окружностей.
Строим первый пробный рисунок (рис. 34) и начинаем рассуждать.
Поскольку в условии задачи задано расстояние между центрами, то необходимо установить их положение. Будем помнить, что четырёхугольник $$ ABCD$$ - ромб, характеризующее его свойство – диагонали, пересекаясь, делятся пополам и перпендикулярны друг другу. Центр окружности, описанной около треугольника, есть точка пересечения серединных перпендикуляров к его сторонам. Треугольники $$ ABD$$ и $$ ACD$$ имеют общую сторону $$ AD$$, следовательно, оба центра лежат на серединном перпендикуляре отрезка $$ AD$$.
Кроме того, центр $$ {O}_{1}$$ окружности, описанной около треугольника $$ ABD,$$ лежит на прямой $$ AC$$ (это серединный перпендикуляр отрезка $$ BD$$), а центр $$ {O}_{2}$$ окружности, описанной около треугольника $$ ACD,$$ лежит на прямой $$ BD$$ (это серединный перпендикуляр отрезка $$ AC$$). Итак, центры окружностей – это точки пересечения серединного перпендикуляра отрезка $$ AD$$ с прямыми $$ AC$$ и $$ BD.$$
![]() |
![]() |
Рис. 34 | Рис. 35 |
Вот теперь строим новый рисунок, на который наносим также числовые данные задачи. Обратим внимание, что окружности рисовать уже нет необходимости.
Обозначим $$ A{O}_{1}={R}_{1}$$ и $$ D{O}_{2}={R}_{2}$$ и, поскольку имеем несколько подобных треугольников, вводим ещё угол $$ \angle MA{O}_{1}=\alpha .$$ Записываем вполне очевидные выводы:
$$ 1. \overline{)\begin{array}{l}∆A{O}_{1}M, \angle M=90°,\\ \angle MA{O}_{1}=\alpha \end{array}}\Rightarrow \begin{array}{l}2={R}_{1}\mathrm{cos}\alpha ,\\ {O}_{1}M={R}_{1}\mathrm{sin}\alpha .\end{array}$$
$$ 2.\overline{)\begin{array}{l}△D{O}_{2}M: \angle M=90°,\\ \angle M{O}_{2}D=\alpha \end{array}} \Rightarrow \begin{array}{l}2={R}_{2}\mathrm{sin}\alpha ,\\ {O}_{2}M={R}_{2}\mathrm{cos}\alpha .\end{array}$$
$$ 3.\overline{)\begin{array}{l}\mathrm{По} \mathrm{условию} {O}_{1}{O}_{2}=3,\\ \mathrm{т}. \mathrm{е}. {O}_{2}M-{O}_{1}M=3\end{array}} \Rightarrow {R}_{2}\mathrm{cos}\alpha -{R}_{1}\mathrm{sin}\alpha =3.$$
Итак, получили систему из трёх уравнений с тремя неизвестными:
$$ {R}_{1}, {R}_{2}, \alpha : \left\{\begin{array}{l}2={R}_{1}\mathrm{cos}\alpha .\\ 2={R}_{2}\mathrm{sin}\alpha ,\\ 3={R}_{2}\mathrm{cos}\alpha -{R}_{1}\mathrm{sin}\alpha .\end{array}\right.\phantom{\rule{0ex}{0ex}}$$
Решать эту систему можно по-разному, например, исключив `R_1` и `R_2`, получить тригонометрическое уравнение
$$ 3=2{\displaystyle \frac{\mathrm{cos}\alpha }{\mathrm{sin}\alpha }}-2{\displaystyle \frac{\mathrm{sin}\alpha }{\mathrm{cos}\alpha }}$$, $$ 2{\mathrm{tg}}^{2}\alpha +3\mathrm{tg}\alpha -2=0$$, $$ \mathrm{tg}\alpha ={\displaystyle \frac{1}{2}}$$ (угол `alpha` - острый), тогда
$$ \mathrm{cos}\alpha ={\displaystyle \frac{1}{\sqrt{1+\mathrm{tg}^{2}\alpha }}}={\displaystyle \frac{2}{\sqrt{5}}}$$ и $$ {R}_{1}=\sqrt{5}, {R}_{2}=2\sqrt{5}$$
В этой задаче, оказавшейся совсем не простой для абитуриентов, трудность для многих была заключена в построении рисунка, обнажающего условие задачи и направляющего решение.