Решение планиметрических задач

Основное внимание, как во всех Заданиях, уделяется методам и приёмам решения задач. Именно решение задач делает изучение вообще, и геометрии в частности, активным. Ведь каждая решённая задача - это некоторый поиск и, пусть небольшое, но открытие. «То, что вы были принуждены открыть сами, оставляет в вашем уме дорожку, которой вы сможете воспользоваться, когда в том возникнет необходимость» (это слова немецкого физика XVII столетия Лихтенберга, который известен своими афоризмами).

Итак, если хотите научиться решать задачи, приобрести навыки решения – учитесь этому, разбирайте решения в учебнике и нашем Задании, повторяйте эти решения (ведь так учатся всему), а затем пробуйте свои силы. У Вас получится.

Задание состоит из четырёх параграфов. В параграфе 1 повторяются признаки подобия треугольников, решается несколько характерных задач на эту тему, повторяются свойства медиан, биссектрис и высот треугольника. Во втором параграфе обсуждаются «задачи в делении отрезка» и доказывается теорема Менелая. Третий параграф посвящён свойствам касательных, хорд, секущих, вписанных и описанных четырёхугольников. В параграфе 4 рассматривается применение теорем синусов и косинусов, разобраны задачи, решение которых требует применение тригонометрии. Почти все эти темы разбирались в заданиях по геометрии в 9 и 10 классах ЗФТШ, поэтому более простые утверждения здесь приводятся без доказательства. Тем, кто поступил в ЗФТШ в 11 класс, рекомендуется доказать эти утверждения самостоятельно, а те, кто учится в ЗФТШ не первый год, найдут много новых интересных задач, подробно решённых в 19 примерах.

Задание оканчивается контрольными вопросами и задачами для самостоятельного решения; они оценены по трудности в очках, которые указаны в скобках после номера. Знаком * «звёздочка» отмечены более трудные вопросы и задачи.

За правильный ответ и верное решение задачи ставится полное число очков, за недочёты и ошибки определённое число очков снимается.

Работу над заданием рекомендуется начать с внимательного чтения его и самостоятельного решения (после ознакомления) всех приведённых в нём задач. Ответы на контрольные вопросы следует давать подробные, со ссылками на соответствующие теоремы учебника или данного задания, с доказательствами своих ответов. В случае отрицательного ответа должен быть приведён опровергающий пример. Приведём примеры ответов на контрольные вопросы.

Вопрос 1

Можно ли утверждать, что треугольник равнобедренный, если его биссектриса является медианой?

Ответ

Рис. 1

Да, можно. Докажем это. Пусть в треугольнике ABCABC биссектриса `BM` является медианой: AM=MCAM=MC (рис. 1). На продолжении биссектрисы BMBM отложим отрезок MDMD, равный MBMB. Треугольники ABMABM и CDMCDM равны по первому признаку: у них углы при вершине MM  равны как вертикальные и AM=CMAM=CM, BM=MDBM=MD. Из равенства треугольников следует

CD=ABCD=AB                                   (1)

и CDM=ABM\angle CDM=\angle ABM. Но ABM=CBM\angle ABM=\angle CBM, поэтому CDM=CBM\angle CDM=\angle CBM, т. е. в треугольнике BCDBCD  углы при основании BDBD равны. По теореме этот треугольник равнобедренный: BC=CDBC=CD. Отсюда и из (1) заключаем: BC=ABBC=AB. Утверждение доказано.

Вопрос 2
Рис. 2

Могут ли длины сторон треугольника быть меньше `1` мм, а радиус описанной окружности больше `1` км?

ОТвет

Да, могут. Приведём пример. Из точки CC, лежащей на окружности  радиуса `2` км, дугой радиуса 1/21/2 мм отмечаем точки AA и BB, лежащие на большей окружности (рис. 2); очевидно, AC=CB=1/2AC=CB=1/2 мм.

Треугольник ABCABC вписан в окружность радиуса `2` км, а его наибольшая сторона ABAB < AC+BC=1AC+BC=1 мм.

вопрос 3
Рис. 3

Можно ли через точку окружности провести три равные между собой хорды?

ответ

Нет, нельзя. Действительно, предположим противное, т. е. предположим, что хорды ABAB, ACAC и ADAD окружности с центром в точке OO равны между собой (рис. 3). Тогда точки BB, CC и DD одинаково удалены от точки `A`, т. е. они лежат на окружности с центром в точке AA. Однако, этого не может быть, так как две окружности с разными центрами не могут иметь более двух общих точек. Значит предположение неверно.

Вопрос 4
Рис. 4

Верно ли, что ABC=A1B1C1\triangle ABC=\triangle A_1B_1C_1, если AB=A1B1AB=A_1B_1, BC=B1C1BC=B_1C_1, C=C1\angle C=\angle C_1?

Ответ

Нет, например, на рис. 4 показаны треугольники ABCABC и A1B1C1A_1B_1C_1, для которых, как легко видеть, выполнены все заданные равенства, но ABCA1B1C1\triangle ABC\neq\triangle A_1B_1C_1, так как ACA1C1AC\neq A_1C_1.

Итак, при утвердительном ответе надо либо привести доказательство того, что данное утверждение верно (как в ответе на вопрос 1), либо привести конкретный пример реализации заданных условий (как в ответе на вопрос 2).

При отрицательном ответе надо либо привести рассуждения, приводящие к противоречию заданных условий аксиоме, теореме или определению (как в ответе на вопрос 3), либо построить один опровергающий пример (как в ответе на вопрос 4).

После повторения тем в §1 – 4 в заключительном пятом параграфе обсудим вопросы подходов к решению, важность хорошего рисунка, выбора переменных, а также остановимся на некоторых ошибках, допускаемых учащимися и абитуриентами.

Это задание вместе с присланным решением будут Вам полезны при подготовке к экзаменам.