
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Аналог метода интервалов на числовой прямой естественно примени́м и в случае наличия в задаче двух переменных – и . Только тогда вместо интервалов на прямой появляются области на координатной плоскости, в которых определены знаки всех подмодульных выражений и можно раскрыть модули.
Изобразим на координатной плоскости множество точек, координаты которых удовлетворяют уравнению: `(|y|)/y=x|x|`.
Переменных две, поэтому рассматривать нужно четыре области на плоскости , задаваемые системами неравенств:
1) ; 2) ; 3) ; 4)
В первом и четвёртом случае после раскрытия модулей получается , то есть . В то же время во втором и третьем случаях получаем , что невозможно на действительной плоскости . После учёта условий на получаем множество точек, изображённое на рис. 38.