Все статьи » ЗФТШ Физика

Статьи , страница 127

  • § 3. Равновесие материальной точки
    Просмотр текста ограничен правами статьи
  • § 4. Равновесие тела при отсутствии вращения
    Просмотр текста ограничен правами статьи
  • § 5. Равновесие тела с закреплённой осью вращения в плоском случае. Момент силы
    Просмотр текста ограничен правами статьи
  • § 6. Равновесие тела в общем случае
    Просмотр текста ограничен правами статьи
  • § 7. Сложение параллельных сил
    Просмотр текста ограничен правами статьи
  • § 8. Центр масс. Центр тяжести
    Просмотр текста ограничен правами статьи
  • § 9. Решение задач
    Просмотр текста ограничен правами статьи
  • § 10. Давление
    Просмотр текста ограничен правами статьи
  • § 11. Закон Паскаля. Сообщающиеся сосуды
    Просмотр текста ограничен правами статьи
  • § 12. Закон Архимеда
    Просмотр текста ограничен правами статьи
  • § 1. Инерция. Первый закон Ньютона

    По взглядам учёных античных времён считалось, что для движения необходимо наличие действия других тел. Если же действие это прекращается, то тело останавливается и возвращается в состояние покоя. Таким образом, покой выступал к ак основное состояние тела, а движение – как временное состояние, обязательно прекращающееся.

    Такая точка зрения просуществовала до XVI века, когда Галилеем были сформулированы суждения принципиально другого толка. Галилей считал, что любое тело сохраняет состояние, в котором оно находится, если на него не действуют другие тела или действия других тел скомпенсированы. Так, физическое тело, лежащее на столе, находится в покое, поскольку на него действует Земля и стол, а действия эти равны по величине и противоположны по направлению. Но тело может не только находиться в покое при равенстве действий других тел, но и двигаться равномерно и прямолинейно. Например, металлический шар, брошенный в воду, тонет с постоянной скоростью (на начальном участке движения это не так, но потом движение действительно станет равномерным). При этом действие Земли скомпенсировано действием воды. И, наконец, тело, движущееся вдали от других тел (современным примером было бы движение космического корабля вдали от гравитирующих масс), будет сохранять свою скорость постоянной относитель но некоторой системы отсчёта, потому что нет тел, которые своим действием изменили бы это состояние движения.

    Ньютон попытался построить учение о движении тел, основываясь на свойствах пространства и времени. По его мнению следовало, что вследствие однородности и изотропности пространства тело сохраняет состояние, в котором оно находится. Если оно в какой-либо системе отсчёта находилось в покое, то и продолжает сохранять покой в этой с. о., если оно двигалось равномерно и прямолинейно, то сохраняет состояние движения. Само движение остаётся равномерным и прямолинейным , потому что пространство во всех точках имеет одинаковые свойства (однородно) и по всем направлениям так же имеет одинаковые свойства (изотропно).

    Инерцией

    называют явление сохранения скорости телом, если на него не действуют другие тела или действие других тел скомпенсировано.

    Инерциальной системой отсчёта называется такая с. о., 

    относительно которой тело движется равномерно и прямолинейно или находится в покое, если на него не действуют другие тела, или действия других тел скомпенсированы.

    Любая другая система отсчёта, движущаяся относительно инерциальной равномерно и прямолинейно, тоже является инерциальной

    Таким образом, достаточно найти хотя бы одну и иерциальную систему отсчёта (далее ИСО), чтобы потом выбирать удобную ИСО. 

    Ньютон считал, что прос ранство абсолютно и неподвижно и что с ним можно связать хотя бы одну ИСО, неподвижную относительно пространства.

    Практический же поиск ИСО представляет целую научную проблему. Несмотря на сложность поиска ИСО, первый (основополагающий) закон Ньютона постулирует их существование.

    Первый Закон Ньютона

    Существуют такие системы отсчёта, относительно которых тело движется равномерно и прямолинейно или находится в покое, если на него не действуют другие тела или действия других тел скомпенсированы.

    Первый закон Ньютона является следствием свойств пространства и времени, т. е. тело может двигаться равномерно и прямолинейно или находиться в покое (если на него не действуют другие тела, или действия других тел скомпенсированы) только тогда, когда свойства пространства в разных точках и направления в нём (вдоль траектории движения тела) равноправны. Сами свойства пространства и времени являются содержанием первого закона (его физическим смыслом). И если хотя бы одна ИСО существует, то остальных ИСО сколько угодно, и все они выступают на равных правах!

    Данное утверждение имеет огромное значение и называется принципом относительности Галилея, и потому выпишем отдельно:

    1. Все ИСО равноправны.

    2. При переходе из одной ИСО в другую форма зписи законов механики не меняется.

    3. Никаким механическим экспериментом нельзя обнаружить равномерное прямолинейное движение.

    Все три формулировки имеют одинаковый смысл, но разнообразие этих формулировок расширяет понимание данного принципа.

    Например, третья формулировка говорит о следующем: пусть мы находимся в закрытом от внешнего мира пространстве (закрытый вагон на очень гладких прямолинейных рельсах без стыков) . Проводя внутри вагона разнообразные механические опыты и анализируя их результаты, мы не сможем ответить на вопрос – движемся ли мы равномерно и прямолинейно или находимся в покое относительно дороги (результаты опытов не зависят от места в пространстве и направления движения в нём).

    Вторая формулировка утверждает, что результаты опытов, проведённых в вагоне (движущемся равномерно и прямолинейно), будут точно такими же, как и те, что получены при наблюдении за тем же опытом через окно вагона наблюдателем, стоящим на поверхности Земли неподвижно.

    Первая формулировка лаконично обобщает все факты, но для полного понимания требуется пояснение или расшифровка, которая звучит в других формулировках. 

    Из перечисленных примеров вытекает, что вполне очевидной будет ситуация, в которой на тело действуют другие тела, а ускорения нет; и невероятной будет ситуация, когда на тело не действуют тела, а ускорение есть.

     

  • § 2. Взаимодействие тел, инертность, масса

    Из наблюдений можно заметить, что тела изменяют свою скорость только при наличии не скомпенсированного действия. Т. к. быстрота изменения скорости характеризуется ускорением тела, можем заключить, что причиной ускорения является некомпенсированное действие одного тела на другое. Но одно тело не может действовать на другое, не испытывая его действия на себе. Следовательно, ускорение появляется при взаимодействии тел. Ускорение приобретают оба взаимодействующие тела. Так же из наблюдений можно установить ещё один факт: при одинаковом действии разные тела приобретают разные ускорения.

    Условились считать: чем меньше ускорение приобретает тело при взаимодействии, тем инертнее это тело.

    Инертность

    это свойство тела сохранять свою скорость постоянной (то же, что и инерция). Проявляет себя в том, что для изменения скорости тела требуется некоторое время. Процесс изменения скорости не может быть мгновенным.

    Например, движущийся по дороге автомобиль не может мгновенно остановиться, для уменьшения скорости требуется некоторое время, а за это время он успевает переместиться на довольно большое расстояние (десятки метров). (Осторожно переходите дорогу!!!)

    Мерой инертности является инертная масса.

    Масса (инертная) – мера инертности тела.

    Чем инертнее тело, тем больше его масса. Чем больше инертность, тем меньше ускорение. Следовательно, чем больше масса тела, тем меньше его ускорение:

    `a~1/m`

    Данная зависимость записана единственно правильным способом, т. к. форма `m~1/m` не верна. Масса не может зависеть от ускорения, она является свойством тела, а ускорение является характеристикой состояния движения тела. 

    Данная зависимость подтверждается многочисленными опытными результатами.

    Два тела, скреплённые между собой сжатой пружиной, после пережигания нити, удерживающей пружину, начинают двигаться некоторое время с ускорением (рис. 1).

    Опыт показывает, что при любых взаимодействиях данных двух тел отношение ускорений тел равно обратному отношению их масс: 

    `a_1/a_2=m_2/m_1`;

    если взять первую массу за эталонную `(m_1=m_("эт"))`,  то `m_2=m_("эт") (a_("эт"))/(a_2)`.

    Масса, измеренная путём взаимодействия (измерения ускорения), называется инертной.

    Измерение массы методом взвешивания тел.

    Второй способ измерения масс основан на сравнении действия Земли на различные тела. Такое сравнение можно осуществить либо последовательно (сначала определяют растяжение пружины под действием эталонных масс, а потом под действием исследуемого тела в тех же условиях), либо одновременно располагают на равноплечих рычажных весах на одной чаше исследуемое тело, а на другой эталонные массы (рис. 2).

    Масса, измеренная путём взвешивания, называется гравитационной.

    Раньше в качестве эталона и той и другой массы была принята масса тела, выполненного в форме цилиндра высотой `39` мм и диаметром `39` мм, изготовленного из сплава `10 %` иридия и `90 %` платины (рис. 3). 

    Для создания нового эталона массы теперь применяется баланс Киббла – напоминающее весы устройство, которое определяет, какой ток нужен для того, чтобы создать электромагнитное поле, способное уравновесить чашу с тестируемым эталоном. Это позволяет вычислить постоянную Планка с беспрецедентной точностью. Знание постоянной Планка, в свою очередь, позволяет определить точную массу объекта в другом режиме работы баланса Киббла.

    Преимущество нового эталона в том, что баланс Киббла всегда можно изготовить заново и провести с помощью него необходимые вычисления. Материальный эталон может быть потерян и уничтожен, кроме того, его масса не остается постоянной, хотя он всегда равен одному килограмму по определению.

    Платиново-иридиевый цилиндр из Палаты мер и весов ушел из употребления 20 мая 2019 года.

    В 1971 г наши соотечественники Брагинский и Панов придумали и провели опыт по сравнению массы гравитационной и инертной. Оказалось, что с точностью до `10^(-12)%` эти массы равны.

    Данный факт известен был и ранее, и послужил основанием для формулировки Эйнштейном принципа эквивалентности.

    Принцип эквивалентности

    утверждает, что

    1) ускорение, вызванное гравитационным взаимодействием в малой области пространства, и за небольшой интервал времени, неотличимо от ускоренно движущейся системы отсчёта.

    2) ускоренно движущееся тело эквивалентно неподвижному телу, находящемуся в гравитационном поле.

    Пример 1

    Два тела массами `400` г и `600` г двигались навстречу друг другу и после удара остановились. Какова скорость второго тела, если первое двигалось со скоростью `3` м/с?

    Решение

    Сила, возникающая при взаимодействии тел, конечно же, не остаётся постоянной, и ускорения тоже. Мы будем считать, что и силы, и ускорения принимают некоторые средние значения, причём одинаковые для любого момента времени. Отношение ускорений тел равно обратному отношению их масс: `a_1/a_2=m_2/m_1`. В свою очередь, ускорение равно отношению изменения скорости ко времени изменения. Конечные скорости тел равны нулю, а время взаимодействия одинаково для обоих тел:

    `m_2/m_1=a_1/a_2=((Deltav_1)/(Deltat))/((Deltav_2)/(Deltat))=(v_("к"1)-v_(01))/(v_("к"2)-v_(02))=(v_(01))/(v_(02))`,

    откуда получим искомую скорость:  `v_(02)=m_1/m_2v_(01)`.

    Количественно ответ будет таким: `v_(02)=(0,4 "кг")/(0,6 "кг")*3"м"/"с"=2"м"/"с"`.


  • § 3. Сила, второй закон Ньютона

    Сила является мерой взаимодействия (взаимного действия). Если действие велико (мало), то говорят о большой (малой) силе. Сила обозначается буквой `F` (первая буква слова force).

    При взаимодействии чем больше сила, тем больше ускорение тела, на которое эта сила действует. Следовательно, ускорение прямо пропорционально действующей силе: `a~F`.

    Но уже говорилось о том, что ускорение зависит от массы тела: `a~1/m`.

    Обобщая эти зависимости получим:

    `a=F/m`,    или      `F=ma`.

    Теперь рассмотрим свойства силы, устанавливаемые опытным путём:

    свойства силы

    1) Результат действия (проявления) силы зависит от направления действующей силы, следовательно, сила – величина векторная.

    2) Результат действия (проявления) силы зависит от величины приложенной силы.

    3) Результат действия (проявления) силы зависит от точки приложения силы.

    4) За единицу силы принято значение такой силы, которая вызывает ускорение `1 "м"//"c"^2` у тела массой `1` кг. Единицу силы назвали в честь Исаака Ньютона `1` Ньютон. (Произносить фамилию считается правильным таким образом, как произносится фамилия в том государстве, где проживал или проживает учёный.) 

    `[vecF]=1"H"=1 "кг"*"м"/("с"^2)`  (Ньютон).

    5) Если на тело одновременно действуют несколько сил, то каждая сила действуетнезависимо от других. (Принцип суперпозиции сил). Тогда все силы необходимо сложить векторно и получить результирующую силу (рис. 4).

    Из приведённых свойств силы следует, как обобщение опытных фактов, второй закон Ньютона:

    Второй закон Ньютона

    Сумма всех сил, действующих на тело, равна произведению массы тела на ускорение, сообщаемое этой суммой сил:

    `sumvecF=mveca`.

    Данное выражение можно представить и в другой форме: так как  `veca=(vecv_"к"-vecv_0)/t`,  то второй закон Ньютона  примет вид: `sumvecF=m(vecv_"к"-vecv_0)/t`.

    Произведение массы тела и его скорости называют импульсом тела: `vecp=mvecv`,

    тогда получим новое выражение для второго закона Ньютона:  

    `sumvecF=(mvecv_"к"-mvecv_0)/t=(vecp_"к"-vecp_0)/t=(Deltavecp)/t`.

    `sum vecF=(vecp_"к"-vecp_0)/t` – второй закон Ньютона в импульсной форме для среднего значения силы. Здесь `vecp_"к"-vecp_0=Deltavecp` – изменение импульса тела, `t` – время изменения импульса тела.

    `sumvecF=(dvecp)/(dt)` – второй закон Ньютона в импульсной форме для мгновенного значения силы.

    Из второго закона в частности следует, что ускорение тела, подвергающегося действию нескольких сил, равно сумме ускорений, сообщаемых каждой силой:

    `veca=sumveca_i=veca_1+veca_2+...+veca_i=(sumvecF)/m=`

    `=(vecF_1+vecF_2+...+vecF_i)/m=(vecF_1)/m+(vecF_2)/m+...+(vecF_i)/m`.

    Первая форма записи второго закона `(sumvecF=mveca)`  справедлива только  при малых  скоростях  по  сравнению   со   скоростью   света. И, разумеется, выполняется второй закон Ньютона только в инерциальных системах отсчёта. Также следует отметить, что второй закон Ньютона справедлив для тел неизменной массы, конечных размеров и движущихся поступательно.

    Второе (импульсное) выражение имеет более общий характер и справедливо при любых скоростях.

    Как правило, в школьном курсе физики сила со временем не меняется. Однако последняя импульсная форма записи позволяет учесть зависимость силы от времени, и тогда изменение импульса тела будет найдено с помощью определённого интеграла на исследуемом интервале времени. В более простых случаях (сила изменяется со временем по линейному закону) можно брать среднее значение силы.

    Иногда очень полезно знать, что произведение `vecF*t` называют импульсом силы, и его значение `vecF*t=Deltavecp`  равно изменению импульса тела.

    Для постоянной силы на графике зависимости силы от времени можем получить, что площадь фигуры под графиком равна изменению импульса (рис. 5).

     

    Но даже если сила будет изменяться со временем, то и в этом случае, разбивая время на малые интервалы `Deltat` такие, что величина силы на этом интервале остаётся неизменной (рис. 6), а потом, суммируя полученные «столбики», получим:

    Площадь фигуры под графиком `F(t)` численно равна изменению импульса.

    В наблюдаемых природных явлениях сила, как правило, меняется со временем. Мы же часто, применяя простые модели процессов, считаем силы постоянными. Сама же возможность использования простых моделей появляется из возможности подсчёта средней силы, т. е. такой постоянной силы, у которой площадь под графиком от времени будет равна площади под графиком реальной силы.

    Следует добавить ещё одно очень важное следствие второго закона Ньютона, связанное с равенством инертной и гравитационной масс.

    следствие второго закона Ньютона

    Неразличимость гравитационной и инертной масс означает, что и ускорения, вызванные гравитационным взаимодействием (законом всемирного тяготения) и любым другим тоже неразличимы.


    Пример 2

    Мяч массой `0,5` кг после удара, длящегося `0,02` с, приобретает скорость `10` м/с. Найти среднюю силу удара.

    Решение

    В данном случае рациональнее выбрать второй закон Ньютона в импульсной форме, т. к. известны начальная и конечная скорости, а не ускорение, и известно время действия силы. Также следует отметить, что сила, действующая на мяч, не остаётся постоянной. По какому закону меняется сила со временем, не известно. Для простоты мы будем пользоваться предположением, что сила постоянная, и её мы будем называть средней.

    Тогда `sumvecF=(Deltavecp)/t`, т. е. `vecF_("ср")*t=Deltavecp`. В проекции на ось, направленной вдоль линии действия силы, получим:  `F_"ср"*t=p_"к"-p_0=mv_"к"`. Окончательно для искомой силы получим:

    `F_"ср"=(mv_"к")/t`.

    Количественно ответ будет таким:

    `F_"ср"=(0,5"кг"*10"м"/"с")/(0,02"с")=250"H"`.



  • §4. Взаимодействие тел, третий закон Ньютона

    Из анализов многочисленных опытов, как уже отмечалось, было получено соотношение масс взаимодействующих тел и их ускорений:

    `m_2/m_1=a_1/a_2`,         или         `m_1a_1=m_2a_2`.

    Но мы знаем из опытов, что при взаимодействии всегда ускорения тел противоположны друг другу: `veca_1 uarr darr veca_2`, следовательно, `m_1veca_1=m_2veca_2`.

    Но произведение массы тела на ускорение этого тела равно действующей на это тело силе. Тогда

    `vecF_1=-vecF_2`

    Данное утверждение и представляет собой третий закон Ньютона.

    Третий закон Ньютона

    При взаимодействии тела действуют друг на друга с силами, равными по величине, противоположными по направлению, одинаковыми по природе и лежащими на прямой, проходящей через центры тел.

    Данные проявления встречаются всюду:

    1) при столкновении (упругом или неупругом) тела деформируются, при этом появляются силы упругости. Первое тело действует на второе с силой `F_(21)`, а второе на первое с силой `F_(12)`. Причём обе силы по природе своей являются силами упругости – силами взаимодействия между молекулами (электромагнитными). Силы лежат на одной прямой, лежащей на линии точек приложения сил. Силы противоположны.

    2) при гравитационном взаимодействии двух тел (Земля и Луна, или Солнце и Юпитер и т. д.) возникают две гравитационные силы, которые тоже противоположны и равны друг другу.

    3) при взаимодействии прямоугольного тела, стоящего на поверхности стола, тоже возникают две силы упругости: сила `F_(12)` возникает потому, что стол деформировался (прогнулся, деформация изгиба см. далее), а сила `F_(21)` возникает потому, что прямоугольное тело тоже деформировалось (сжалось под действием силы тяжести, подробнее см. далее). Обе силы равны друг другу и противоположны.

    Рассмотрение примеров позволяет сформулировать следующие свойства сил, возникающих при взаимодействии:

    свойства сил, возникающих при взаимодействии:
    • силы всегда появляются (или исчезают) парами;
    • силы не компенсируют друг друга, т. к. приложены к разным телам;
    • силы одинаковой природы.
    Пример 3

    Для растяжения пружины жёсткостью `50` Н/м, закреплённой одним концом на стене, на `20` см требуется сила `10` Н. Какую силу нужно приложить к этой пружине, чтобы растянуть её на `20` см, прикладывая силу с двух сторон и действуя в противоположных направлениях?

    Решение

    В первом случае в растянутом состоянии пружина находилась в состоянии покоя. Следовательно, по второму закону Ньютона сила, приложенная к пружине со стороны руки, скомпенсирована силой, приложенной к пружине со стороны стены. Значит, стена действует на пружину с силой `10` Н.

    а) Первая пара сил: точка приложения силы со стороны руки неподвижна и находится в пружине, а сила упругости пружины приложена к точке, находящейся в руке, и тоже неподвижна. Эти две силы равны и противоположны по третьему закону Ньютона.

    б) Вторая пара сил: во второй паре взаимодействующих тел (стены и пружины) силы тоже равны и противоположны по тому же закону.

    Во втором случае пружина тоже находится в покое. Только теперь одна из сил создаётся одной рукой, а вторая сила второй рукой. Сила, создаваемая стеной в первом случае, заменяется силой, создаваемой второй рукой, во втором. Понятно, что неподвижной пружина останется во втором случае только тогда, когда величина силы тоже сохранит первоначальное значение. Следовательно, во втором случае к пружине нужно приложить силу `10` Н с обеих сторон.

  • § 5. Виды деформаций, закон Гука

    Из наличия упругих свойств твёрдых тел можем заключить, что между молекулами и атомами существуют как силы притяжения, так и силы отталкивания. Исследования показали, что эти силы сильно зависят от расстояния между молекулами.

    Если две молекулы разместить так, чтобы расстояние между их центрами составило примерно два радиуса, то сумма сил притяжения и отталкивания равна нулю.

    При этом сила отталкивания представлена на графике зависимости силы от расстояния в виде кривой $$ f=a/{r}^{13}$$, а сила притяжения в виде другой кривой $$ f=-b/{r}^{7}$$ (рис. 7). Сумма этих графиков и есть сила взаимодействия между молекулами. По графику видно, что при сближении молекул на расстояние, меньшее $$ 2{r}_{0}$$ между центрами, возникает быстро растущая сила отталкивания, а при удалении этих молекул возникает сначала растущая (по модулю) сила притяжения, а потом эта сила начинает убывать и стремится к нулю на больших расстояниях.

    рис. 7

    Теперь понятно, что даже если сила притяжения или отталкивания между парой молекул мала, то при деформации макроскопического тела таких пар сил возникнет колоссально много, и они дадут в сумме макроскопическую силу упругости, компенсирующую внешнюю силу.

    Деформацией

    называют изменение формы и размеров тела под действием внешних сил.

    Все деформации можно разделить на четыре вида: сжатия – растяжения, изгиб, сдвиг и кручение.

    Деформация сжатия-растяжения.

    Первоначальная длина тела равна $$ {l}_{0}$$, а конечная длина $$ {l}_{\mathrm{к}}$$. При такой деформации длина тела изменяется на величину:

    `Deltal=l_"k"-l_0` - абсолютное удлинение

    Величина деформации так же характеризуется безразмерной величиной:

    `varepsilon =(Deltal)/l_0` - относительное удлинение.

    Примеров таких деформаций очень много: ножки стула, стола, стены зданий, некоторые кости скелета, мачта парусника во время штиля и др.

    Робертом Гуком экспериментально было установлено, что:


    `(F_"упр")_X=-kDeltal` - закон Гука в интегральной форме (рис. 8).


    `k` - коэффициент упругости или жёсткости тела.

    Рис. 8


    Сила упругости, возникающая при деформации, прямо пропорциональна смещению частиц и направлена в сторону, противоположную смещению частиц при деформации.

    Закон Гука стал средством для измерения сил. Т. к. чтобы определить величину (модуль) какой - либо силы, необходимо сравнить её с эталоном. Две силы считаются равными по модулю и противоположно направленными, если при их одновременном действии на одно и то же тело его общее ускорение равно нулю (скорость тела не изменяется). Таким образом, можно сравнивать силы и измерять их (если одну из них выбрать в качестве эталона).

    На практике пружину, подчиняющуюся закону Гука, градуируют на разные значения силы для измерения силы. Далее воздействуют ею на тело так, чтобы тело стало двигаться равномерно. В этом состоянии сила, ранее действовавшая на тело, стано вится равной силе, действующей со стороны пружины, определяемой по граду и рованной шкале. Прибор для измерения силы называется динамометром.

    Пример 4

    К резиновому шнуру подвесили груз, под действием которого шнур растянулся на $$ 4 \mathrm{см}$$. Затем шнур сложили вдвое, закрепив сложенные концы вверху, а к середине снова подвесили тот же груз. На сколько шнур растянется во втором случае?

    Решение

    Если шнур в первом случае растянулся на $$ 4 \mathrm{см}$$, то каждая половина шнура растянулась на $$ 2 \mathrm{см}$$, а половины шнура были соединены между собой последовательно. Сила упругости внутри шнура везде одинакова и равна весу груза. Коэффициент жёсткости каждой половины можно представить в виде: $$ {k}_{2}={\displaystyle \frac{mg}{{x}_{0}/2}}$$.

    Во втором случае половинки шнура соединены между собой параллельно, следовательно, условие равновесия груза теперь выглядит так:

    \[mg = 2\cdot k_2x_2, \ \mathrm{откуда}\ x_2 = \dfrac{mg}{2k_2} = \dfrac{mg}{2\frac{mg}{x_0/2}} = \dfrac{x_0}{4} = 1\ \mathrm{см}.\]

  • § 6. Закон всемирного тяготения. Вес тела

    Анализируя законы Кеплера, описывающие движение планет, И. Ньютон в 1667 году пришёл к открытию закона всемирного тяготения:

    `F=G(Mm)/R^2`

    где `G` - гравитационная постоянная.

    Все тела во Вселенной взаимно притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.

    В такой форме закон справедлив только для двух тел, которые можно считать материальными точками. Однако можно доказать, что для двух однородных тел шарообразной формы эта форма записи закона тоже справедлива.

    Измерить величину гравитационной постоянной удалось английскому физику Г. Кавендишу в 1798 году.

    С помощью крутильных весов и свинцовых шаров ему удалось получить значение гравитационной постоянной:

    `G=6,67259*10^(-11)("H""м"^2)/"кг"^2`.

    Второй закон Ньютона позволяет записать для силы, с которой тело притягивается к Земле: `F=G(Mm)/(R^2)=mg`, тогда `g=GM/R^2` - ускорение свободного падения на поверхности Земли (измерено Галилеем и Ньютоном), на расстоянии, большем радиуса на величину `h`, ускорение свободного падения находится по формуле:

    `g=GM/((R+h)^2)` -  ускорение свободного падения на высоте `h` от поверхности Земли.

    Силой тяжести

     называют силу, с которой тело притягивается к планете

    `F=mg` - сила тяжести.

    Весом тела

    называют силу упругости, с которой тело действует на опору и подвес.

    Рассмотрим твёрдое тело, расположенное на горизонтальной неподвижной опоре: под действием силы тяжести тело деформируется. Если тело находится на опоре, то на нижний слой действуют все верхние слои, и, как следствие,  этот  слой деформируется наибольшим образом. На предпоследний слой действует меньшее количество слоёв, и он деформируется  меньше. Таким образом, тело, бывшее прямоугольным, примет вид трапеции. Нижний слой приблизился при такой деформации к центру тела, а значит, возникла сила упругости, направленная в сторону, противоположную направлению смещения частиц при деформации. Сила упругости, возникшая внутри данного тела, направлена перпендикулярно опоре. Эту силу, созданную деформированным телом и приложенную к опоре, называют весом тела. Опора под действием веса деформируется. Противоположная весу сила упругости действует на данное тело со стороны деформированной опоры и тоже направлена перпендикулярно опоре, но называется силой реакции опоры `N` (от слова normal - перпендикуляр).

    На рисунке 9 тело не касается опоры для того, чтобы показать, что вес приложен к опоре, а сила реакции опоры к телу. В действительности площадь реального соприкосновения твёрдых тел невелика. Большей частью между телами находится тонкий слой воздуха.


    Вполне очевидно, что если опоры нет, то и веса тело иметь не будет. Такое случится в том случае, если тело движется под действием только одной силы - силы тяготения.

    Невесомостью

    называют состояние тела, когда оно движется под действием только силы тяготения.

    Также легко понять, что если на тело действует две силы (сила тяжести и сила реакции опоры), то эти силы не обязательно равны друг другу. Одна из них может быть больше другой.

    Рассмотрим движение тела, помещённого в лифт. Пусть сам лифт движется с ускорением `veca`. 

    Такое ускорение будет в двух случаях:

    1) лифт поднимается равноускорено,

    2) лифт опускается равнозамедленно.

    Второй закон Ньютона для данного тела примет вид:

    `vecN+mvecg=mveca`.

    При рассмотрении данного движения из лабораторной неподвижной системы отсчёта `Oy` увидим, что в проекции на вертикальную ось `Oy` второй закон запишется следующим образом:

    `N-mg=ma`, 

    откуда   

    `N=ma+mg=m(g+a)`.

    Но по третьему закону Ньютона знаем, что сила реакции опоры и вес тела равны и противоположны, следовательно:

    `N=P`, 

    тогда:

    `P=m(g+a)` - вес тела, движущегося с ускорением, направленным вверх (рис. 10).

    Не трудно проследить за тем, что мы получим, если ускорение тела будет направлено вниз.

    В проекции на ось `Oy` ускорение проецируется со знаком «`-`», что даст окончательную формулу для веса:

    `P=m(g-a)` - вес тела, движущегося с ускорением, направленным вниз.

    Или в общем случае:

    `P=m(g+-a)` - вес тела, движущегося с ускорением.

    Подобным образом можно получить выражение для веса тела, движущегося равномерно по выпуклому участку дороги.

    `P=m(g-a)=m(g-v^2/R)` - вес тела, движущегося с ускорением, направленным вниз (выпуклая дорога).

    `P=m(g+a)=m(g+v^2/R)` - вес тела, движущегося с ускорением, направленным вверх (вогнутая дорога).

    Важное дополнение:

    Для рассматриваемой силы, называемой весом, важно понимать и уметь правильно изображать точку приложения этой силы.

    На рисунке 11а показан лифт, у которого нет ускорения. Тогда сила тяжести равна силе реакции опоры. А по третьему закону Ньютона, сила реакции опоры равна весу тела. Точка приложения силы тяжести расположена в геометрическом центре тела, если тело однородно и правильной формы. Точка приложения силы реакции опоры должна быть изображена внутри тела вблизи с нижней поверхностью тела на линии действия силы тяжести. Последнее свойство на рисунке не выдержано для удобства изображения (иначе силы на рисунке будут накладываться друг на друга). Точка приложения веса тела находится внутри опоры (пола лифта) вблизи поверхности на линии действия силы реакции опоры.

       

    На рисунке 11б ускорение лифта направлено вниз. Тогда сила реакции опоры меньше силы тяжести. А вес снова равен силе реакции опоры.

    На рисунке 11в ускорение лифта направлено верх. Тогда сила реакции опоры больше силы тяжести. А вес снова равен силе реакции опоры.

    Пример 5

    Определить среднюю плотность Солнца, если его масса равна `2*10^(30)` кг, а ускорение свободного падения на поверхности приблизительно составляет `273,1 "м"//"с"^2`.

    Решение

    Так как `g=GM/R^2`, то можем найти радиус Солнца: `R=sqrt((GM)/g)`. Считая Солнце шаром найденного радиуса и известной массы, можем найти среднюю плотность.

    `rho=M/V=M/(4/3piR^3)=(3M)/(4pi((GM)/g)^(3/2))= 3/(4pisqrtM)(g/G)^(3/2)`.

    Количественно ответ будет таким: `rho=1400 "кг"//"м"^3`. Однако следует отметить, что этот ответ таков в данной модели. В действительности плотность Солнца не одинакова в недрах светила, и является функцией расстояния от центра. Мы же посчитали её везде одинаковой.

    Пример 6

    На сколько изменится сила притяжения двух одинаковых шаров, изготовленных из одинакового вещества плотностью `rho`, если у одного из них создать полость сферической формы, расположенную внутри одного из них в его центре? Изначально шары касались друг друга и притягивались с силой `80` Н. Радиус полости равен половине радиуса шара   (рис. 12).


    Решение

    Сила взаимодействия определяется законом всемирного тяготения. Т. к. формы тел шарообразные, то мы можем применить известную формулу закона: 

    `F_1=G(Mm)/R^2`.

    Массы тел равны, обозначим их `m`. Масса извлечённой части

    `m_0=4/3pi(R/2)^3rho=1/8m`.

    Новая сила будет меньше первоначальной на величину силы взаимодействия извлечённой части с первым шаром (принцип суперпозиции сил). Следовательно:

    `F_2=G(m_0m)/((2R)^2)=G(1/8mm)/((2R)^2)=1/8G(mm)/((2R)^2)=1/8F=10` H.

    Сила притяжения шаров станет меньше на `10` Н, следовательно, станет равной `70` Н.



  • § 7. Сила трения
    Сила трения

    сила механического сопротивления, возникающая в плоскости соприкосновения двух прижатых друг к другу тел при их относительном перемещении.

    Сила сопротивления, действующая на тело, направлена противоположно относительному перемещению данного тела.

    Сила трения возникает по двум причинам:

    1) первая и основная причина заключается в том, что в местах соприкосновения молекулы веществ притягиваются друг к другу, и для преодоления их притяжения требуется совершить работу. Соприкасающиеся поверхности касаются друг друга лишь в очень небольших по площади местах. Их суммарная площадь составляет `0,01-:0,001` от общей (кажущейся) площади соприкосновения. При скольжении площадь реального соприкосновения не остается неизменной. Сила трения (скольжения) будет изменяться в процессе движения. Если тело, которое скользит, прижать сильнее к телу, по которому происходит скольжение, то вследствие деформации тел площадь пятен соприкосновения (и сила трения) увеличится пропорционально прижимающей силе.

    `F_"тр"~F_"приж"`

    2) вторая причина возникновения силы трения – это наличие шероховатостей (неровностей) поверхностей, и деформация их при движении одного тела по поверхности другого. Глубина проникновения (зацепления) шероховатостей  зависит от прижимающей силы, а от этого  зависит и величина деформаций. Последние, в свою очередь, определяют величину силы трения: `F_"тр"~F_"приж"`.

    При относительном скольжении обе причины имеют место, потому  характер взаимодействия имеет вид простого соотношения:

    `F_"тр"=muN` – сила трения скольжения (формула Кулона – Амонтона), где

    `mu` – коэффициент трения скольжения,

    `N` –  сила реакции опоры, равная прижимающей силе.

    Величина коэффициента трения различна для разных комбинаций трущихся веществ даже при одинаковой их обработке (силы притяжения  и упругие свойства зависят от рода вещества).

    Если между трущимися поверхностями будет находится смазка, то сила притяжения изменится заметным образом (будут притягиваться другие молекулы, и сила трения скольжения частично заменится силой вязкого трения, которую мы рассмотрим ниже).

    Если на тело, лежащее на горизонтальной поверхности, действует горизонтальная сила `vecF`, то движение будет вызвано этой силой только в том случае, когда она станет больше некоторого значения `(muN)`. До начала  движения  внешняя  сила скомпенсирована силой трения покоя. Сила трения покоя всегда равна внешней силе, параллельной поверхности, и возникает по причине притяжения между молекулами  в областях пятен соприкосновения, и деформации шероховатостей.  

    Сила трения покоя различна в разных участках поверхности, по которой будет происходить движение. Если тело долго лежит на поверхности, то  вследствие вибраций (они всегда присутствуют на поверхности Земли) площадь пятен соприкосновения незначительно увеличится. Поэтому для начала движения придётся преодолеть немного большую силу трения, чем сила трения скольжения. Данное явление называется явлением застоя. С этим явлением мы сталкиваемся, например, передвигая мебель в комнате. (На рисунке 13 превосходство трения покоя над  трением скольжения сильно преувеличено).      

    Силой трения покоя мы пользуемся для перемещения на лыжах или просто при ходьбе.

    Рассмотренные виды силы трения относятся к сухому трению или внешнему. Но есть еще один вид силы трения – вязкое трение.

    При движении тела в жидкости или газе происходят достаточно сложные процессы обмена молекулами между слоями обтекающей жидкости или газа. Эти процессы называют процессами переноса.

    При небольших скоростях движения тела относительно газа или жидкости сила сопротивления будет определяться выражением:

    `F_"тр"=6pietarv`  – закон Стокса для шара, где

    `eta` - вязкость вещества, в котором движется тело;

    `r` - средний поперечный размер (радиус) тела;

    `v` - относительная скорость тела;

    `6pi` - коэффициент, соответствующий сферической форме тела.

    Вывод  о величине скорости (большая она или маленькая) можно сделать, определив безразмерный коэффициент, называемый числом Рейнольдса:

    `Re=(rhorv)/eta` - число Рейнольдса,  где

    `rho` - плотность вещества, в которой движется тело.

    Если `Re<1700`, то движение газа (жидкости) вокруг тела ламинарное (слоистое), и скорости можно считать малыми.

    Если `Re>1700`, то движение газа (жидкости) вокруг тела турбулентное (с завихрениями), и скорости можно считать большими.

    В последнем случае на образование вихрей тратится большая часть кинетической энергии тела, а значит, сила трения становится большей, а зависимость перестаёт быть линейной.

    `F_"тр"=kv^2rhoS` - сила вязкого трения при больших скоростях, где

    `S` -  площадь поперечного сечения тела,

    `k` - постоянная величина, зависящая от поперечных размеров тела.

     Часто последнюю формулу можно видеть в виде: 

    `F_"тр"=betav^2`.

    Число Рейнольдса, выбранное равным `1700`, в действительности определяется конкретной задачей (условиями) и может принимать другие значения того же порядка. Объясняется это тем, что зависимость силы вязкого трения от скорости носит сложный характер: при некотором значении скорости `v_1` линейная зависимость начинает нарушаться, а при некотором значении скорости `v_2`  эта зависимость становится квадратичной. В промежутке от `v_1` до `v_2` степень принимает дробные значения (рис. 14). Число Рейнольдса характеризует состояние динамической системы, при котором движение слоёв остаётся ламинарным, и сильно зависит от внешних условий. К примеру: стальной шар, двигаясь в воде вдали от границ жидкости (в океане, озере) сохраняет ламинарным движение слоёв при `Re=1700`, а тот же шар, движущийся в вертикальной трубе немного большего, чем шар, радиуса, заполненной водой, уже при `Re=2` вызовет появление завихрений воды вокруг шара. (Отметим, что число Рейнольдса не единственное, применяемое для описания подобного движения. Например, применяют ещё числа Фруда и Маха.)

    Из-за такой сложной зависимости силы сопротивления от размеров, формы тела и его скорости рассчитать с необходимой точностью силу сопротивления невозможно. Потому приходится создавать макеты летательных аппаратов и измерять силу сопротивления опытным путём, продувая воздух в аэродинамических трубах.

    Пример 7

    Сила сопротивления воздуха, действующая на капли тумана, пропорциональна произведению скорости на радиус капель: `F=krv`. Капли радиуса `0,1` мм, падая с большой высоты, у земли имеют скорость около `1` м/с. Какую скорость будут иметь капли, радиус которых в два раза меньше? В десять раз меньше?

    Решение

    Капля падает с постоянной скоростью, т. к. сила тяжести скомпенсирована силой вязкого трения о воздух: `krv=mg` или `krv=rho 4/3 pir^3g`, откуда `v=(4rho pig)/(3k)r^2`.

    Из полученного результата следует, что скорость капли прямо пропорциональна квадрату радиуса. Если радиус капли уменьшится в два раза, то скорость её падения уменьшится в четыре раза, и составит `v_1~~0,25` м/с; а если радиус окажется в десять раз меньше, то скорость будет в сто раз меньше, т. е. `v_2~~0,01` м/с. 

    Задача любопытна тем, что может объяснить почему облака не падают. Ведь облака – это туман, который не падает из-за наличия восходящих потоков воздуха. На нижней границе облака находятся наиболее крупные капли. Поднимаясь, скорость потока уменьшается, т. к. он совершает работу над встретившимся воздухом и увеличивает свою потенциальную энергию. Раз скорость потока в верхней части облака меньше, то и размер капель там тоже меньше. Капли «висят» над поверхностью земли на постоянной высоте.


  • Примеры решения задач
    Пример 8

    Какие силы действуют на человека во время ходьбы? Какая сила приводит его в движение?

    Решение

    На человека всегда действует сила тяжести `(mvecg)`. Она приложена ко всем частям организма, но принято её изображать приложенной к центру масс (на рис. 15 это не так). Во время ходьбы человек мышечными усилиями толкает ногу назад, относительно центра масс (туловища). На рисунке эта сила обозначена как `vecF_"м"`. Нога бы начала такое движение, если бы не было сцепления протектора подошвы и поверхности асфальта (пола). Вдоль поверхности возникает сила трения покоя. Нога толкает этой силой асфальт влево `(vecF_"тр")`, а асфальт толкает ногу вправо `(vecF_"тр")`, приводя её в движение относительно асфальта. Человек оказывает на поверхность асфальта действие, называемое весом `(vecP)`, а на человека действует противоположная сила реакции опоры `(vecN)`.

    Пример 9

    С каким ускорением будет двигаться тело массой `3` кг по поверхности стола с коэффициентом трения `0,3`, если к нему приложить силу `10` Н под углом `30^@` к горизонту?

    Решение

    Расставим силы. При расстановке сил пользуются, преимущественно, двумя моделями: 1) все силы прикладывают к центру масс тела, который символизирует материальную точку, в качестве которой рассматривается тело; 2) точки приложения сил изображают там, где сила приложена. Во втором случае требуется применять ряд дополнительных правил, которые на первых порах излишне усложняют решение. На данном рисунке 16 применены правила первой модели.

    Далее запишем 2-ой закон Ньютона в векторной форме:

    `mvecg+vecF_"тр"+vecN+vecF=mveca`.

    Теперь пишем проекции этого уравнения на оси `Ox` и `Oy`.

    Отметим, что оси удобнее всего выбирать из принципа удобства, что чаще всего соответствует направлению одной из осей вдоль ускорения, а второй оси перпендикулярно первой. Ели движутся несколько тел, то для каждого тела можно выбирать свою удобную пару осей.

    `Ox:   -F_"тр"+Fcosalpha=ma`,

    `Oy:   -mg+N+Fsinalpha=0`.
    Вспомогательное уравнение (формула Кулона – Амонтона)

    `F_"тр"=mu*N`.

    Решая скалярную тройку уравнений, получим:

    `a=F/m(mu*sinalpha+cosalpha)-mug`.

    Подставим числовые значения и получим:  `a~~0,39  "м"/"с"^2`.

    При достаточной тренировке в решении задач запись в векторном виде становится излишней, и пишем сразу проекции на оси. На начальном этапе обучения пропускать эту запись не следует.

    Пример 10

    По наклонной плоскости с углом наклона при основании `alpha=30^@` соскальзывает тело. Найти ускорение тела при коэффициенте трения поверхности и тела, равным `0,2`.

    Решение

    На рисунке 17 расставим силы и выберем оси координат из принципа удобства (одна из осей вдоль ускорения).

    Запишем уравнение второго закона Ньютона в векторном виде:

    `mvecg+vecF_"тр"+vecN=mveca`.

    Далее проецируем его на оси координат:

    `Ox:   -F_"тр"+mg*sinalpha=ma`,

    `Oy:   -mg*cosalpha+N=0`.


    Добавим формулу Кулона – Амонтона:

    `F_"тр"=muN`.

    Решая систему уравнений, получим:

    `a=g(sinalpha=mucosalpha)`.

    Числовой ответ даёт значение    `a~~3,27  "м"/"с"^2`.

    Рассмотрим способ с другими направлениями осей (рис. 18) (неудобными):


    `Ox:   -F_"тр"*cosalpha+N*sinalpha=ma*cosalpha`,

    `Oy:   -mg+N*cosalpha=-a*sinalpha`.

    Добавим формулу Кулона – Амонтона: `F_"тр"=muN`.

    Решение этой системы уравнений так же приведёт к тому же ответу (проверьте самостоятельно), но путь достижения цели будет и длиннее, и сложнее.

    Пример показывает рациональность предлагаемого принципа удобства.

    Пример 11

    Коэффициент трения между резиной и асфальтом `0,7`. Какой должна быть ширина дороги, чтобы на ней смог развернуться мотоциклист без уменьшения скорости, если его скорость равна `54` км/ч? 

    Если мотоциклист планирует развернуться, не уменьшая скорости, то движение его будет равномерным по окружности. Сила, приводящая к изменению направления скорости, будет сообщать центростремительное (нормальное) ускорение (рис. 19). Этой силой будет сила трения.

    Решение

    Выберем ось `Ox` вдоль ускорения (рис. 20). Запишем 2-й закон Ньютона в проекции на эту ось:

    `F_"тр"=ma_n=mv^2/R`.

    Так как `F_"тр"=muN`, а `N=mg`, то `mumg=mv^2/R`, откуда `R=v^2/(mug)`, тогда для разворота нужна ширина   

    `l=2R`;  `l=(2v^2)/(mug)`;   `l=64,3` м.

    Из ответа видим, что для разворота на реальной дороге необходимо снизить скорость.

    Пример 12

    Два тела массами `m_1=2` кг  `m_2=3` кг связаны нитью. Первое тело тянут вправо с силой `F=15` H по поверхности с коэффициентом трения `mu=0,1`. Определите силу натяжения нити, связывающей тела. С каким ускорением движутся тела? Оборвётся ли нить, если поместить тела на поверхность с коэффициентом трения `0,3`, а  максимальная сила натяжения нити `10` Н? 

    Решение

    Расставим силы, действующие на тела (рис. 21):

    Выберем ось `Ox` вдоль силы `vecF` и ось `Oy` перпендикулярно ей.

    Второй закон Ньютона для двух тел в проекции на ось `Ox`:

    `F-F_("тр"1)-T+T-F_("тр"2)=(m_1+m_2)a`,

    для первого тела на ось `Oy`:

    `N_1-m_1g=0`,  тогда   `F_("тр"1)=mum_1g`; 

    для второго тела:

    `N_2-m_2g=0`,  тогда   `F_("тр"2)=mum_2g`;  

    Выразим ускорение из проекции `Ox` подставляя силы трения:

    `a=F/(m_1+m_2)-mug`,

    `a=2"м"/"с"^2`.

    Теперь запишем второй закон Ньютона для второго тела:

                                `Ox`:    `T-F_("тр"2)=m_2a`,

     откуда              `T=F_("тр"2)=m_2a`,

                                `T=m_2(mug+a)`,

                                 `T=m_2/(m_1+m_2)F=9`H.  

    Если `mu=0,3`, то `a=0`, тела движутся равномерно, а сила натяжения нити останется прежней, `T=9 "H"<10 "H"`. Нить не порвётся.

    Пример 13

    На вершине наклонной плоскости, с углом при основании `30^@` укреплён неподвижный блок. Через блок перекинута невесомая и нерастяжимая нить. К нити привязаны два тела: `m_1=3` кг со стороны плоскости и `m_2=4` кг с другой. Коэффициент трения при движении тела по поверхности равен `0,2`. Какова сила натяжения нити и ускорения тел?

    Решение

    Силы, действующие на тела, представлены на рисунке 22.

    Запишем 2-й закон Ньютона для первого тела в проекциях:

    `Ox:`      `T_1-F_"тр"-m_1gsinalpha=m_1a_1`,

    `Oy:`      `N-m_1gcosalpha=0`.

    С учётом, что `F_"тр"=muN`,  получим  `T_1=mum_1gcosalpha-m_1gsinalpha=m_1a_1`.

    Для второго тела в проекции на  `Oz:`

    `m_2g-T_2=m_2a_2`.

    Решая совместно два уравнения, получим (учитывая, что `a_1=a_2=a` и `T_1=T_2=T`)

    `a=(m_2-m_1sinalpha-mum_1cosalpha)/(m_1+m_2)g`,

    `a~~2,83 "м"//"с"^2`.

    Из этих же уравнений получим силу натяжения нити:  

    `T=g  (m_1m_2)/(m_1+m_2)(1+sinalpha+mucosalpha)`

    `T~~28,7 "H"`.

    Пример 14

    Какую горизонтальную силу `F` нужно приложить к тележке массой `M`, чтобы бруски массой `2m` и `3m` (рис. 23) относительно неё не двигались? Трением пренебречь.

    Решение

    На рисунке 24 изображены силы, действующие на тела.

     

    Если трения нет и бруски неподвижны относительно тележки, то 2-й закон Ньютона в проекциях для тел примет вид:

    1) для тележки:

                                `Ox:`    `F-P_1-T_4=Ma_0`,

                                `Oy:`    `N_1+N_2-Mg_P_2-T_3=0`;

    2) для бруска `3m:`

                                      `Ox:`   `T_2=3ma_2`,

                                      `Oy:`   `N_3-3mg=0`,

                                                 `N_3=P_2`;

    3) для бруска `2m:`

                                      `Ox:`    `N_4=2ma_1`,

                                      `Oy:`    `T_1-2mg=0`,

                                                  `N_4=P_1`; 

    4) `T_1=T_2=T_3=T_4`   (неть невесома),

    5)  `a_1=a_2=a_0`    (нить нерастяжима).

    Решая совместно, получим `F=a_0(M+5m)`.

    Рассматривая уравнения двух брусков совместно, получим 

    `3ma_0=2mg`  или  `a_0=2/3g`.

    Тогда `F=2/3g(M+5m)`.

    Пример 15

    Горизонтальный диск вращают с угловой скоростью `omega=20` рад/с вокруг вертикальной оси `OO^'` (рис. 25). На поверхности диска в гладкой радиальной канавке находятся грузы `1` и `2` массами `m_1=0,2` кг и `m_2=0,1` кг радиусы их вращения  `R_1=0,1` м, `R_2=0,2` м. Найти силы натяжения нитей.

    Решение

    Рассмотрим силы, действующие на тела, и ускорения тел (рис. 26).

    Уравнение 2-го закона в проекциях имеет вид:

    1)  `T_1-T_2=m_1omega^2R_1`.

    2)  `T_2=m_2omega^2R_1`.

    `T_1=T_2+m_1omega^2R_1=omega^2(m_1R_1+m_2R_1)`.

    `T_1=16"H"`.

    `T_2=8"H"`.

    Пример 16

    Два небольших по размерам груза с массами `3m` и `m` связаны нитью длиной `l_2` и прикреплены к оси `O O_1` нитью длиной `l_1`, составляющей угол `beta` с осью `O O_1` (см. рис. 27). Грузы находятся на горизонтальной платформе и вращаются вместе с ней вокруг вертикальной оси `O O_1`. При какой постоянной угловой скорости грузы будут давить на платформу с одной и той же силой? Трение между грузами и платформой пренебрежимо мало.

    Решение

    На рисунке 28 изображены силы, действующие на грузы.

    Для первого груза уравнения 2-го Закона Ньютона в проекции имеют вид:

                                       `Ox:`    `T_1=momega^2(l_2+l_1sinbeta)`;

                                       `Oy:`    `N_1=mg`,

                                                   `N_1=P_1`; 

    Для второго груза:

                                         `OX:`    `T_3sinbeta-T_2=3momega^2l_1sinbeta`

                                         `OY:`    `T_3cosbeta+N_2=3mg`

                                                     `N_2=P_2`

                                                     `P_1=P_2`  (по условию),

                                                     `T_1=T_2`  (нить невесома).  


    Из равенства  `P_1=P_2` следует `N_1=N_2`,  поэтому  `T_3=(2mg)/(cosbeta)`.

    Тогда из проекции на `Ox`  следует:

    `2mg"tg"beta=momega^2 (l_2+l_1sinbeta+3l_1sinbeta)`

    `omega=sqrt((2g"tg"beta)/(l_2+4l_1sinbeta))`. 

    Пример 17

    Найдите ускорения тел системы, изображённой на рисунке 29. Сила `F` приложена по направлению  нити к одному из тел массы `m`. Участки нити по обе стороны от лёгкого блока, прикреплённого к телу  массы `M`, параллельны.

    Решение

    Силы, действующие на тела, изображены на рисунке 30.

     

    Для первого тела

                                             `Ox:`      `F-T=ma_1`                                                              (1)

    Для второго тела:

                                             `Ox:`      `-T=-ma_2`                                                              (2)

    Для третьего тела:

                                               `Ox:`       `2T=Ma_3`                                                                   (3)

    Т. к. нить нерастяжима, то смещение второго тела к блоку  `(l_2)` равно смещению первого тела от блока  `(l_1)`. Т. к. блок сам смещается с ускорением, то к смещению первого блока добавится смещение  `2l_3`:

                                              `a_1=a_2+2a_3`.                                                                   (4)

    Из (2) и (3) следует  `a_2=a_3 M/(2m)`.

    Тогда, решая совместно (1), (4) и (2), получим

    `a_3=F/(M+2m)`,   

    тогда

    `a_2=F/((M+2m))*M/(2m)`   и    `a_1=(F/(M+2m))((M+4m)/(2m))`. 

  • §1. Система отсчёта

    В предыдущем задании по физике механическое движение было определено как всякое изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Следовательно, чтобы узнать, движется ли конкретное тело и как оно движется, необходимо указать, относительно каких тел (объектов) рассматривается это движение. Тела, относительно которых рассматривается изучаемое движение, называются телами отсчёта, а само движение при этом является относительным.

    В то же время выбор одного лишь тела отсчёта не даёт возможности полностью описать изучаемое движение, поэтому с телом отсчёта связывают так называемую систему координат, а отсчёт времени ведут с помощью часов, наличие которых предполагается изначально. Выбор той или иной системы координат для решения конкретной задачи осуществляется по соображениям удобства. Наиболее привычной и распространённой для нас является декартова прямоугольная система координат, с которой мы и будем работать в дальнейшем. Тело отсчёта и связанная с ним система координат в совокупности с часами для отсчёта времени образуют систему отсчёта.

  • §2. Физические модели

    Реальные движения тел порой так сложны, что при их изучении необходимо постараться пренебречь несущественными для рассмотрения деталями. С этой целью в физике прибегают к моделированию, т. е. к составлению упрощённой схемы (модели) явления, позволяющей понять его основную суть, не отвлекаясь на второстепенные обстоятельства. Среди общепринятых физических моделей важную роль в механике играют модель материальной точки и модель абсолютно твёрдого тела.

    Материальная точка – это тело, геометрическими размерами которого в условиях задачи можно пренебречь и считать, что вся масса тела сосредоточена в геометрической точке.

    Абсолютно твёрдое тело (просто твёрдое тело) – это система, состоящая из совокупности материальных точек, расстояния между которыми в условиях задачи можно считать неизменными.

    Модель материальной точки применима прежде всего в случаях, когда размеры тела много меньше других характерных размеров в условиях конкретной задачи. Например, можно пренебречь размерами искусственного спутника по сравнению с расстоянием до Земли и рассматривать спутник как материальную точку. Это – верно! Но вместе с тем не стоит ограничиваться лишь подобными случаями.

    Дело в том, что сложное движение реального тела можно «разложить» на два простых вида движения: поступательное и вращательное (см. Задание №1). Если при сложном движении заменить тело материальной точкой, то мы исключим из рассмотрения вращение тела, т. к. говорить о вращении точки вокруг самой себя бессмысленно (точка не имеет геометрических размеров). Следовательно, заменив тело материальной точкой при сложном движении, мы допустим ошибку. Однако часто в случаях, когда тело движется поступательно, не вращаясь, его можно считать материальной точкой независимо от размеров, формы и пройденного им пути.

    Модель абсолютно твёрдого тела можно применять, когда в условиях рассматриваемой задачи деформации реального тела пренебрежимо малы. Так, например, в задании, посвящённом вопросам статики (Задание №4), мы будем изучать условия равновесия твёрдого тела и при решении задач часто применять указанную модель. Вместе с тем, данная модель неуместна, если суть задачи состоит, например, в изучении деформаций тела в результате тех или иных воздействий в процессе его движения или в состоянии покоя.

    Таким образом, мы будем изучать механическое движение не самих реальных тел, а упомянутых выше моделей. Из них основной и наиболее употребимой для нас станет модель материальной точки. В то же время там, где это необходимо, мы будем ради наглядности изображать на рисунках тела не в виде точек, а в виде объектов, геометрические размеры которых не равны нулю.