
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Для химической характеристики вещества наиболее важны его кислотно-основные и окислительно-восстановительные свойства. Они напрямую связаны со строением молекулы.
Способность молекулы вступать в кислотно-основные реакции, т. е. проявлять свойства кислоты или основания, также зависит от полярности связи. Например, если рассматривать вещества, образующие связи $$ \mathrm{R} –\mathrm{O} –\mathrm{H}$$, можно проследить влияние заместителя `"R"` на свойства группы $$ \mathrm{O}–\mathrm{H}$$. По мере роста полярности связи $$ \mathrm{R}-\mathrm{O}$$ в ряду $$ \mathrm{N}–\mathrm{O}$$, $$ \mathrm{Zn}–\mathrm{O}$$, $$ \mathrm{Na}–\mathrm{O}$$ прочность её ослабевает, поэтому усиливаются основные свойства и снижаются кислотные свойства соединений: сравните $$ {\mathrm{O}}_{2}\mathrm{NOH}$$ (сильная азотная кислота, так как связь $$ \mathrm{N}-\mathrm{O}$$ менее полярна, чем $$ \mathrm{H}-\mathrm{O}$$) – $$ \mathrm{Zn}(\mathrm{OH}{)}_{2}$$ (это амфотерное соединение, поскольку связи $$ \mathrm{O}–\mathrm{H}$$ и $$ \mathrm{Zn}–\mathrm{O}$$ близки по полярности) - $$ \mathrm{NaOH}$$ (сильное основание, так как связь $$ \mathrm{Na}-\mathrm{O}$$ полярнее, чем связь $$ \mathrm{O}-\mathrm{H}$$).
Наряду с полярностью связи реакционная способность зависит и от ее длины. Так, если рассмотреть однотипные соединения $$ \mathrm{R}-\mathrm{H}$$, где $$ \mathrm{R}$$ - атом галогена, то в ряду $$ \mathrm{HF}–\mathrm{HCl}–\mathrm{HBr}–\mathrm{HI}$$ растет размер атома галогена и ослабляется его связь с атомом водорода, что проявляется в усилении кислотных свойств, т. е. способности отщеплять катион водорода $$ {\mathrm{H}}^{+}$$ при диссоциации в водном растворе.
Окислительно-восстановительная способность молекул, т. е. склонность их вступать в реакции, связанные с изменением степени окисления, также зависит от состояния атомов, образующих молекулы. Атомы, имеющие недостаток электронов (т. е. находящиеся в высшей положительной степени окисления), стремятся их приобрести, поэтому они будут проявлять окислительные свойства. Атомы, имеющие избыток электронов (т. е. находящиеся в низшей отрицательной степени окисления), стремятся их отдать, поэтому они будут проявлять восстановительные свойства.
В зависимости от степени окисления входящих в соединение атомов будет изменяться заполнение их электронных оболочек. Поэтому в разных степенях окисления один и тот же атом может проявлять свойства окислителя или восстановителя. Например, марганец в степени окисления $$ +7$$ является сильным окислителем, а в степени окисления $$ +2$$ - восстановителем.
Геометрия молекул также оказывает влияние на реакционную способность отдельных атомов или групп атомов. Ее учёт необходим при рассмотрении свойств сложных молекул, в которых определенные группы атомов могут затруднять приближение реагирующих молекул к атомам, расположенным ближе к центру молекулы.
Таким образом, строение электронной оболочки атома предопределяет возможность образования им химических связей и свойства этих связей, т. е. химические свойства образовавшегося соединения. Но строение электронной оболочки зависит от положения атома в периодической таблице элементов. Поэтому между положением элемента в Периодической системе и химическими свойствами его соединений прослеживается четкая связь.
Положение элемента в периодической системе (номер группы и периода) позволяет оценить число валентных электронов, способных принимать участие в образовании химических связей. Степень завершённости внешнего энергетического уровня позволяет предсказать склонность атома к присоединению или отдаче электронов. Таким образом, возможно предвидеть как максимальную валентность данного элемента, так и наиболее характерные степени окисления его в соединениях и, следовательно, характерные формулы соединений. Анализ степени ионности образующихся связей с другими элементами позволяет предсказывать химическое поведение этих соединений.
Возьмём для примера элемент №`15` - фосфор и попытаемся предсказать свойства его соединений исходя из его положения в периодической системе. Этот элемент находится в главной подгруппе $$ \mathrm{V}$$ группы и в `3` периоде. Конфигурация внешнего электронного слоя $$ 3{s}^{2}3{p}^{3}$$, т. е. фосфор имеет `5` валентных электронов. Число недостающих до завершения внешнего уровня электронов $$ \left(3\right)$$ меньше, чем число электронов, которые необходимо отдать, чтобы освободить внешний уровень $$ \left(5\right)$$. Поэтому атом фосфора будет охотнее принимать недостающие электроны, т. е. проявлять окислительную способность (неметаллические свойства).
Наиболее устойчивыми будут соединения со степенью окисления фосфора $$ –3$$, в которых атом фосфора, приняв `3` электрона от партнеров по связям, завершит свой внешний уровень. Отрицательные степени окисления будут иметь соединения фосфора с менее электроотрицательными элементами: водородом и металлами. В степени окисления $$ –3$$ фосфор образует летучее водородное соединение формулы $$ {\mathrm{PH}}_{3}$$, которая характерна для элементов главной подгруппы $$ \mathrm{V}$$ группы. Разница электроотрицательностей фосфора и водорода невелика, поэтому в этом соединении будут слабополярные ковалентные связи, для которых нехарактерен разрыв с отщеплением катиона $$ {\mathrm{H}}^{+}$$, т. е. водные растворы этого соединения не будут проявлять свойства кислоты.
В то же время при взаимодействии фосфора с более электроотрицательными элементами (галогенами, кислородом) он будет отдавать свои валентные электроны, приобретая положительные степени окисления. Фосфор имеет возможность распарить свои `2s`-электроны, поскольку на `3` энергетическом уровне есть свободные орбитали `d`-подуровня. Возбужденный атом фосфора имеет `5` неспаренных электронов и может образовать `5` ковалентных связей с более электроотрицательными атомами, т. е. его максимальная валентность равна `5`. Наиболее устойчивыми будут соединения в степенях окисления $$ +3$$ и $$ +5$$; они образуются при отдаче `3p`-электронов или всех `5` валентных электронов. В положительных степенях окисления фосфор будет образовывать оксиды $$ {\mathrm{P}}_{2}{\mathrm{O}}_{3}$$ и $$ {\mathrm{P}}_{2}{\mathrm{O}}_{5}$$. С водой эти оксиды дают соединения $$ {\mathrm{H}}_{3}{\mathrm{PO}}_{3}$$ и $$ {\mathrm{H}}_{3}{\mathrm{PO}}_{4}$$. Поскольку разница относительных электроотрицательностей `"O"` и `"H"` чем `"O"` и `"P"`, то связь $$ \mathrm{O}-\mathrm{H}$$ более полярна, чем связь $$ \mathrm{O}-\mathrm{P}$$, поэтому она будет разрываться легче с образованием катиона $$ {\mathrm{H}}^{+}$$. Значит, эти соединения будут проявлять свойства кислот, а следовательно, и и сами оксиды будут кислотными оксидами.
Ввиду того, что фосфор занимает промежуточное положение между ярко выраженными металлами и неметаллами в ряду значений относительной электроотрицательности, для него нехарактерно образование ионных связей; связи его в соединениях неполярные или слабополярные ковалентные. На основании рассмотрения конкретных молекул можно определить их пространственную структуру.