
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Взаимодействие валентных (наименее прочно связанных с ядром) электронов атомов приводит к образованию химических связей, т. е. к объединению атомов в молекулу. Образование молекулы из атомов возможно лишь тогда, когда оно приводит к выигрышу энергии; молекулярное состояние должно обладать меньшей энергией, чем атомное состояние, и, следовательно, быть устойчивее. Таким наиболее устойчивым является состояние атома, когда число электронов на внешнем электронном уровне максимальное, которое он может вместить; такой уровень называется завершенным и характеризуется наибольшей прочностью. Таковы электронные конфигурации атомов благородных газов. Значит, образование химической связи должно приводить к завершению внешнего электронного уровня атомов.
Это взаимодействие валентных электронов, приводящее к образованию химической связи, может осуществляться по-разному. Различают три основных вида химической связи: ковалентную, ионную и металлическую.
Рассмотрим механизм возникновения ковалентной связи на примере образования молекулы водорода (рис. 3):
`"H" + "H" = "H"_2`; `Delta"H"=-436` кДж/моль
Реакция сопровождается высвобождением большого количества тепла, значит, она энергетически выгодна.
Ядро свободного атома водорода окружено сферически симметричным электронным облаком, образованным `1s`-электроном. При сближении атомов до определенного расстояния происходит частичное перекрывание их электронных облаков (орбиталей).
Обычно наибольшее перекрывание электронных облаков осуществляется вдоль линии, соединяющей ядра двух атомов.
Ковалентная связь, которая образуется при перекрывании орбиталей вдоль линии, связывающей центры соединяющихся атомов, называется `sigma`-связью.
1) в виде точек, обозначающих электроны и поставленных у химического знака элемента:
$$ \mathrm{H}·+·\mathrm{H}=\mathrm{H}:\mathrm{H}$$ где «`:`» означает `sigma`-связь;
2) с помощью квантовых ячеек (орбиталей), как размещение двух электронов с противоположными спинами в одной молекулярной квантовой ячейке:
3) часто, особенно в органической химии, ковалентную связь изображают черточкой, которая символизирует пару электронов: `"H"-"H"`.
Ковалентная связь в молекуле хлора также осуществляется с помощью двух общих электронов или электронной пары:
$$ :\underset{··}{\overset{··}{\mathrm{Cl}}}·+·\underset{··}{\overset{··}{\mathrm{Cl}}}:\to :\underset{··}{\overset{··}{\mathrm{Cl}}}:\underset{··}{\overset{··}{\mathrm{Cl}}}:$$
В каждом атоме хлора `7` валентных электронов, из них `6` в виде неподеленных пар, а `1` - неспаренный электрон. Образование химической связи происходит именно за счёт неспаренных электронов каждого атома хлора. Они связываются в общую пару (или неподелённую пару) электронов. Если считать, что общая пара принадлежит обоим атомам, то каждый из них становится обладателем `8` электронов, т. е. приобретает устойчивую конфигурацию благородного газа. Поэтому ясно, что молекула хлора энергетически выгоднее, чем отдельные атомы.
неподелённые пары остаются при своих атомах, а та что их связывает уже становится поделённой между двумя атомными центрами.
Это также `sigma`-связь, но она образована перекрыванием `p`-электронных орбиталей по оси `x` (рис. 4).
Если в реагирующих атомах имеется $$ 2$$ или $$ 3$$ неспаренных электрона, то могут образоваться не $$ 1$$, а $$ 2$$ или $$ 3$$ связи, т. е. общие электронные пары. Если между атомами возникла одна ковалентная связь, то она называется одинарной, если две -двойной, если три - тройной. Они обозначаются соответственно «`=`» или «`-=`» штрихами.
Но хотя обозначение их одинаково, они отличаются по своим свойствам от одинарной `sigma`-связи. Чтобы пояснить разницу, рассмотрим образование тройной связи в молекуле азота `"N"_2`. В ней атомы имеют три общие пары электронов:
$$ :\underset{·}{\overset{·}{\mathrm{N}}}·+·\underset{·}{\overset{·}{\mathrm{N}}}:\to \stackrel{··}{\mathrm{N}}⋮⋮\stackrel{··}{\mathrm{N}}$$
Они образованы неспаренными `p`-электронами двух атомов азота:
Орбитали `2p`-электронов расположены взаимно перпендикулярно, т. е. по осям `x`, `y` и `z`. Если перекрывание по оси `x` ведёт к образованию `σ`-связи (перекрывание вдоль линии, связывающей центры атомов), то перекрывание по осям `y` и `z` происходит по обе стороны от линии, связывающей центры соединяющихся атомов. Такая ковалентная связь, возникающая при перекрывании орбиталей по обе стороны от линии, связывающей центры соединяющихся атомов, называется `pi`-связью.
Очевидно, что взаимное перекрывание орбиталей в случае `pi`-связи меньше, чем в случае `sigma`-связи, поэтому `pi`-связь всегда менее прочная, чем `sigma`-связь. Но в сумме три связи `(sigma_x+pi_y+pi_z)` придают молекуле $$ {\mathrm{N}}_{2}$$ большую прочность (рис. 5), поэтому молекула азота при нормальных условиях нереакционноспособна.
Таким образом, если имеется ординарная связь, то это обязательно `sigma`-связь; если имеется двойная или тройная связь, то одна из составляющих её связей обязательно `sigma`-связь (как более прочная она формируется первая и разрушается последняя), а остальные -`pi`-связи. И `sigma`-, и `pi`-связи – это разновидности ковалентной связи.
В общем случае ковалентной называется химическая связь, осуществляемая электронными парами.
Различают неполярную и полярную ковалентную связь. Все рассмотренные выше молекулы образованы атомами одного и того же элемента, при этом двухэлектронное облако связи распределяется в пространстве симметрично относительно ядер обоих атомов, и электронная пара в одинаковой мере принадлежит обоим атомам. Такая связь называется неполярной ковалентной связью.
Иной случай реализуется, если связь образуют два атома различных элементов с отличающимися величинами относительной электроотрицательно-сти, например $$ \mathrm{HCl}$$, $$ {\mathrm{H}}_{2}\mathrm{O}$$, $$ {\mathrm{H}}_{2}\mathrm{S}$$, $$ {\mathrm{NH}}_{3}$$ и др. В этом случае электронное облако связи смещено к атому с большей относительной электроотрицательностью. Такой вид связи называется полярной ковалентной связью.
Например, полярная ковалентная связь образуется при взаимодействии атомов водорода и хлора (рис. 6).
$$ \mathrm{H}·+·\underset{··}{\overset{··}{\mathrm{Cl}}}:\to \mathrm{H}:\underset{··}{\overset{··}{\mathrm{Cl}}}:$$
Электронная пара смещена к атому хлора, так как относительная электроотрицательность хлора `(x=3)` больше, чем у водорода `(x=2,1)`.
У молекул, содержащих неполярную связь, связующее облако распределяется симметрично между ядрами обоих атомов, и ядра в равной степени тянут его к себе. Электрический момент диполя таких молекул $$( {\mathrm{H}}_{2},{\mathrm{F}}_{2},{\mathrm{Cl}}_{2}$$ и др.`)` равен нулю. Молекулы, содержащие полярную связь, образованы связующим электронным облаком, смещенным в сторону атома с большей относительной электроотрицательностью.
Описанные выше примеры образования ковалентной связи относятся к обменному механизму, когда каждый из соединяющихся в молекулу атомов предоставляет по электрону. Однако образование ковалентной связи может происходить и по донорно-акцепторному механизму. В этом случае химическая связь возникает за счёт двухэлектронного облака одного атома (спаренных электронов) и свободной орбитали другого атома. Атом, предоставляющий неподеленную пару, называется донором, а атом, принимающий её (т. е. предоставляющий свободную орбиталь) – акцептором.
Механизм образования ковалентной связи за счёт двухэлектронного облака одного атома (донора) и свободной орбитали другого атома (акцептора) называется донорно-акцепторным; образованная таким путём ковалентная связь называется донорно-акцепторной или координационной связью.
Рассмотрим в качестве примера механизм образования иона $$ {\mathrm{NH}}^{4+}$$. В молекуле аммиака атом азота имеет неподеленную пару электронов; у иона водорода свободна `1s`-орбиталь. При образовании катиона аммония двухэлектронное облако азота становится общим для атомов $$ \mathrm{N}$$ и $$ \mathrm{H}$$, т. е. оно превращается в молекулярное электронное облако. Таким образом, возникает четвертая ковалентная связь:
Положительный заряд иона водорода становится общим (он рассредоточен между всеми атомами), а двухэлектронное облако (неподеленная электронная пара), принадлежавшее азоту, становится общим с водородом. По своим свойствам четвертая $$ \mathrm{N}-\mathrm{H}$$ связь в ионе $$ {\mathrm{NH}}_{4}^{+}$$ ничем не отличается от остальных трех. Поэтому донорно-акцепторная связь - это не особый вид связи, а лишь особый механизм (способ) образования ковалентной связи.
Еще один тип связи - ионная связь - возникает, когда взаимодействуют электронные облака атомов, чьи относительные электроотрицательности резко отличаются. В этом случае общая электронная пара настолько смещена к одному из атомов, что практически переходит в его владение. При этом он образует отрицательно заряженный анион, а атом, отдавший электрон - катион. Например, атомы натрия и хлора резко отличаются по электроотрицательности (`x=0,9` и `x=3` соответственно), поэтому атом хлора очень сильно притягивает электрон, стремясь завершить свой внешний электронный уровень, а атом натрия охотно его отдаёт, поскольку ему для получения устойчивой конфигурации внешнего слоя удобнее отдать единственный валентный электрон:
$$ \mathrm{Na}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{1}\right)–е={\mathrm{Na}}^{+}\left(1{s}^{2}2{s}^{2}2{p}^{6}\right)$$
$$ \mathrm{Cl}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{5}\right)+е={\mathrm{Cl}}^{-}\left(1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}\right)$$.
Электронная оболочка атома натрия превратилась в устойчивую оболочку атома неона, а оболочка хлора - в устойчивую оболочку другого инертного газа - аргона. Между ионами $$ {\mathrm{Na}}^{+}$$ и $$ {\mathrm{Cl}}^{-}$$, несущими разноименные заряды, возникают силы электростатического притяжения, в результате чего образуется соединение $$ \mathrm{NaCl}$$.
Химическая связь между ионами, возникающая в результате их электростатического притяжения, называется ионной связью.
Ионные соединения образуют атомы элементов, резко отличающихся по электроотрицательности, например атомы элементов главных подгрупп $$ \mathrm{I}$$ и $$ \mathrm{II}$$ и групп с элементами главных подгрупп $$ \mathrm{VI}$$ и $$ \mathrm{VII}$$ групп.
Таким образом, между механизмами возникновения ковалентной и ионной связей нет принципиального различия. Они различаются лишь степенью поляризации (смещения) общих электронных пар. Поэтому можно рассматривать ионную связь как предельный случай полярной ковалентной связи.
Вместе с тем надо помнить о важных отличиях ионной связи от ковалентной. Ионная связь характеризуется ненаправленностью в пространстве (каждый ион может притягивать ион противоположного знака по любому направлению) и ненасыщаемостью (взаимодействие ионов не устраняет способность притягивать или отталкивать другие ионы). Вследствие ненаправленности и ненасыщаемости ионные соединения в твёрдом состоянии представляют собой ионную кристаллическую решётку, в которой каждый ион взаимодействует не с одним, а со многими ионами противоположного знака; например, в решётке хлорида натрия катион натрия окружён шестью хлорид-анионами и наоборот. Связи между ионами многочисленны и прочны, поэтому вещества с ионной решёткой тугоплавки, малолетучи и обладают сравнительно высокой твёрдостью. При плавлении ионных кристаллов прочность связи между ионами уменьшается, и расплавы их проводят электрический ток. Ионные соединения, как правило, хорошо растворяются в воде и других полярных растворителях.
В то же время ковалентная связь отличается насыщаемостью (т. е. способностью атомов образовывать ограниченное количество ковалентных связей, определяемое числом неспаренных электронов) и направленностью (определённой пространственной структурой молекул, которой мы коснёмся ниже).
Твёрдые вещества, состоящие из молекул (полярных и неполярных), образуют молекулярные кристаллические решётки. Молекулы в таких решётках соединены сравнительно слабыми межмолекулярными силами, поэтому вещества с молекулярной решёткой имеют малую твёрдость, низкие температуры плавления, они плохо растворимы в воде, а их растворы почти не проводят электрический ток. Число неорганических веществ с молекулярной кристаллической решёткой невелико: лёд, твёрдый оксид углерода `("IV")` («сухой лёд»), твёрдые галогеноводороды и простые вещества, но зато большинство кристаллических органических соединений имеют молекулярную решётку.
Если же в узлах решётки располагаются атомы, соединённые прочными ковалентными связями, то такие вещества имеют высокие температуры плавления, прочность и твёрдость, они практически нерастворимы в жидкостях.
Характерный пример вещества с атомной кристаллической решёткой - алмаз; она характерна также для твёрдого бора, кремния, германия и соединений некоторых элементов с углеродом и кремнием.
Особый тип решётки в твёрдом состоянии образуют металлы. В узлах такой металлической кристаллической решётки находятся катионы металлов, а между ними - отрицательно заряженный «электронный газ». Атомы металлов в решётке упакованы так тесно, что валентные орбитали соседних атомов перекрываются, и электроны получают возможность свободно перемещаться из орбиталей одного атома в орбитали других атомов, осуществляя связь между всеми атомами данного кристалла металла. Лишённые валентных электронов, атомы превращаются в катионы, а электроны, осуществляющие связь, перемещаются по всему кристаллу металла и становятся общими.
Такой тип химической связи, которая осуществляется электронами, принадлежащими всем атомам одновременно, называется металлической связью. Металлическая связь характерна для металлов в твёрдом и жидком состоянии.
Металлическая связь имеет некоторое сходство с ковалентной, поскольку и в ее основе лежит обобществление валентных электронов. Однако при ковалентной связи эти электроны находятся вблизи соединенных атомов и прочно с ними связаны, тогда как при металлической связи электроны свободно перемещаются по всему кристаллу и принадлежат всем его атомам. Именно поэтому кристаллы с ковалентной связью хрупки, а с металлической – пластичны, т. е. без разрушения изменяют форму, прокатываются в листы, вытягиваются в проволоку. Наличие свободных электронов придает кристаллам металлов непрозрачность, высокую электрическую проводимость, теплопроводность.
Иногда в соединениях мы встречаемся с особой формой химической связи – так называемой водородной связью. Она менее прочна, чем уже рассмотренные виды, и может считаться дополнительной связью к уже существующим ковалентным.
Водородная связь возникает между атомом водорода в соединении и сильно электроотрицательным элементом с малыми размерами - фтором, кислородом, азотом, реже хлором и серой.
Водородную связь обозначают точками, подчёркивая тем самым её сравнительную слабость (примерно в $$ 15–20$$ раз слабее ковалентной).
Водородная связь весьма распространена и играет важную роль при ассоциации молекул, в процессах кристаллизации, растворения, образования кристаллогидратов, электролитической диссоциации и других важных физико-химических процессах.
Молекула воды может образовывать четыре водородные связи, так как имеет два атома водорода и две несвязывающие электронные пары:
Эта способность обусловливает строение и свойства воды и льда.
Вода является жидкостью, хотя более тяжелый сероводород - полный электронный аналог воды - газ. Молекулы воды образуют между собой водородные связи, что увеличивает плотность вещества в жидком состоянии и его температуру кипения. Между молекулами сероводорода подобных связей не возникает из-за большого радиуса и сравнительно малой электро-отрицательности атома серы.
При замерзании количество водородных связей между молекулами воды становится максимальным. Строго ориентируясь относительно друг друга, они образуют правильные шестиугольники. Образованные ими канальцы заполнены воздухом, поэтому плотность льда меньше плотности воды (рис. 7).
Водородная связь приводит к образованию димеров муравьиной и уксусной кислот, устойчивых в газообразном и жидком состоянии:
Благодаря водородной связи фтороводород `"HF"` в обычных условиях суще-ствует в жидком состоянии (`"t"_"кип"=19,5^@"C"`), а плавиковая кислота диссоциирует с образованием как фторид-аниона `"F"^−`, так и гидродифторид-аниона $$ {\mathrm{HF}}_{2}^{-}$$.
Важную роль играют водородные связи в химии процессов жизнедеятельности, поскольку они распространены в молекулах белков, нуклеиновых кислот и других биологически важных соединений.