1.6 ПСХЭ в свете теории строения атома

Между положением элемента в периодической системе элементов и распределением электронов в его атоме по энергетическим уровням наблюдается определенная связь.

Проследим, как происходит заполнение электронами электронных оболочек атомов элементов $$ 1-6$$ периодов Периодической системы химических элементов Д.И. Менделеева.

В первом периоде находятся только те элементы, у которых электронами заполняется `ls`-подуровень: водород `"H"` $$ \left(1{s}^{1}\right)$$ и гелий `"He"` $$ \left(1{s}^{2}\right)$$. Емкость первого энергетического уровня на этом исчерпана, поэтому следующий электрон оказывается на втором энергетическом уровне - в Периодической системе открывается второй период. Он начинается элементами, у которых также заполняется `s`-подуровень: литий `"Li"` $$ \left(2{s}^{1}\right)$$ и бериллий `"Be"` $$ \left(2{s}^{2}\right)$$.

Элементы, в атомах которых последним заполняется `s`-подуровень внешнего уровня, называют `s`-элементами. К ним относятся `"H"`, `"He"`, и элементы `"IA"` и `"IIA"`-групп: $$ \mathrm{Li},\mathrm{Na},\mathrm{K},\mathrm{Rb},\mathrm{Cs},\mathrm{Fr},\mathrm{Be},\mathrm{Mg},\mathrm{Ca},\mathrm{Sr},\mathrm{Ba},\mathrm{Ra}.$$

Затем происходит заполнение `p`-подуровня. Элементы, в атомах которых последним заполняется `p`-подуровень внешнего энергетического уровня, называют `p`-элементами. Во втором периоде это `"B"` ($$ 2{s}^{2}2{p}^{1}$$), `"C"` ($$ 2{s}^{2}2{p}^{2}$$), `"N"` ($$ 2{s}^{2}2{p}^{1})$$, `"О"` $$ \left(2{s}^{2}2{p}^{4}\right)$$, `"F"` $$ \left(2{s}^{2}2{p}^{5}\right)$$, `"Ne"` $$ \left(2{s}^{2}2{p}^{6}\right).$$ На втором энергетическом уровне может находиться не больше восьми электронов, поэтому в данном периоде не может быть больше восьми элементов.

Далее следует третий период. Он также начинается с `s`-элементов: `"Na"` $$ \left(3{s}^{1}\right)$$ и `"Mg"` $$ \left(3{s}^{2}\right)$$ и продолжается `p`-элементами от `"Al"` $$ \left(3{s}^{2}3{p}^{1}\right)$$ до `"Ar"` $$ \left(3{s}^{2}3{p}^{6}\right).$$ Можно было бы ожидать, что третий период будет продолжаться и далее, ведь на третьем энергетическом уровне может находиться `18` электронов, так как появляется `d`-подуровень, состоящий из пяти орбиталей. Тем не менее период завершается. Почему?

Электронная конфигурация остова элементов четвертого периода соответствует конфигурации аргона - $$ 3{s}^{2}3{p}^{6}$$. Как и все благородногазовые конфигурации, она является очень плотным и симметричным электронным слоем, который работает в двух направлениях: экранирует (заслоняет) заряд ядра и отталкивает от себя 19-й электрон атома калия и 20-й электрон атома кальция - для них энергетически выгодным является `4s`-состояние: $$ \mathrm{K}\left[\mathrm{Ar}\right]4{s}^{1}$$ и $$ \mathrm{Ca}\left[\mathrm{Ar}\right]4{s}^{2}$$.

Однако для следующего за кальцием 21-го элемента скандия становится возможным `3d`-состояние. Почему? На `4s`-орбитали больше нет вакантных мест, следовательно, 21-му электрону скандия приходится «выбирать» между `3d`- и `4p`-состоянием.

Для дальнейшего понимания физической сути процесса нужно учитывать тот факт, что заряд ядра каждого последующего элемента также возрастает на единицу, поэтому становится возможным нахождение электронов на орбиталях, близких к $$ {s}^{2}{p}^{6}$$ оболочке, то есть на орбиталях предвнешнего `d`-подуровня. Таким образом, у скандия один электрон «садится» на `3d`-орбиталь, но два других валентных электрона все также находятся на `4s:` $$ \mathrm{Sc}\left[\mathrm{Ar}\right]3{d}^{1}4{s}^{2}.$$

Так как всего на `d`-подуровне может разместиться `10` электронов, в Периодической системе появляется декада (десять) `d`-элементов.

Элементы, в атомах которых происходит заполнение `d`-подуровня предвнешнего уровня, называют `d`-элементами. Перечислим `d`-элементы первой декады: `"Sc"(3d^1  4s^2)`, `"Ti"(3d^2  4s^2)`, `"V"(3d^3  4s^2)`, `"Cr"(3d^5  4s^1)`, `"Mn"(3d^5  4s^2)`, `"Fe"(3d^6  4s^2)`, `"Co"(3d^7  4s^2)`, `"Ni"(3d^4  s^2)`, `"Cu"(3d^(10) 4s^1)`, `"Zn"(3d^(10)  4s^2)`.

Начиная с галлия, происходит заполнение `4p`-подуровня: от `"Ga"` $$ \left(4{s}^{2}4{p}^{1}\right)$$ до завершающего период инертного газа `"Kr"` $$ \left(4{s}^{2}4{p}^{6}\right)$$.

Аналогично происходит заполнение электронных оболочек в атомах элементов пятого периода.

Некоторые особенности появляются при формировании электронных оболочек в атомах элементов шестого периода. Он, как и все предыдущие, начинается s-элементами `("Cs", "Ba")`, далее - лантан `"La"`, в атоме которого начинает заполняться `5d`-подуровень ($$ 5{d}^{1}6{s}^{2}$$), но после лантана расположено семейство `f`-элементов. Первая последовательность `f`-элементов - лантаноиды. Они начинаются с $$ \mathrm{Cе}\left(4{f}^{1}5{d}^{1}6{s}^{2}\right)$$ и заканчиваются $$ \mathrm{Lu}(4{f}^{14}5{d}^{1}6{s}^{2}$$). После лантаноидов вновь продолжает заполняться `5d`-подуровень (от `"Hf"` до `"Hg"`). После этого строится `6p`-подуровень (от `"T"1` до `"Rn"`).

Итак, в появлении подуровней и их заселении электронами можно выявить следующие закономерности:

во втором периоде `p`-подуровень и появляется, и заполняется. В третьем периоде `d`-подуровень появляется, а заполняется с отставанием на один - в четвёртом. В четвёртом периоде появляется `f`-подуровень, заполняется же он с отставанием уже на два - в шестом.

Наиболее стабильными состояниями подуровня являются состояния, когда он полностью заполнен электронами, когда заполнен наполовину, либо когда совсем пуст. То есть для `p`-подуровня стабильными являются `p^0`, `p^3` и `p^6` состояния, для `d`-подуровня - $$ {d}^{0},{d}^{5}$$и $$ {d}^{10}$$, для `f`-подуровня - $$ {f}^{0}$$, $$ {f}^{7}$$ и $$ {f}^{14}$$.

Поэтому в атомах элементов `"Cr"`$$ \left(3{d}^{5}4{s}^{1}\right)$$, `"Mo"`$$ \left(4{d}^{5}5{s}^{1}\right)$$, `"Cu"`$$ \left(3{d}^{10}4{s}^{1}\right)$$, `"Ag"`$$ \left(4{d}^{10}5{s}^{1}\right)$$, `"Au"(5d^(10)6s^1)` наблюдается «провал» электрона: электрон с внешнего `s`-подуровня переходит на `d`-предвнешний подуровень, для того чтобы он оказался или наполовину завершённым `("Cr"` и `"Mo")`, или полностью завершённым `"(Cu, Ag, Аu)"`. Явление «провала» электрона присуще также и некоторым другим `d`-элементам.

Примеры

Рассмотрим электронную конфигурацию `p`-элемента на примере атома брома:

`"Br"` - элемент № 35, четвёртый период, `"VII  A"`-группа.

Так как бром находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для брома $$ +35$$. Он должен быть компенсирован 35-ю электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома брома $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{10}4{s}^{2}4{p}^{5}$$ или $$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}$$. Его валентный уровень состоит из двух подуровней: внешних `4s` и `4p`. Семь электронов, размещенных на этих подуровнях являются валентными, то есть принимают участие в образовании связей атома селена с другими атомами.

Изобразим орбитальную диаграмму валентного уровня брома:

Орбитали внешнего `4d`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у брома есть возможность распарить свои `4p`-электроны.

Рассмотрим электронную конфигурацию `d`-элемента на примере атома титана:

`"Ti"` - элемент № 22, четвёртый период, `"IV B"`-группа.

Так как титан находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для титана $$ +22$$. Он должен быть компенсирован 22-мя электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома титана $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{2}4{s}^{2}$$ или $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}$$. Его валентный уровень состоит из двух подуровней: предвнешнего `3d` и внешнего `4s`. Четыре электрона, размещенных на этих подуровнях являются валентными, то есть принимают участие в образовании связей атома титана с другими атомами.

Изобразим орбитальную диаграмму валентного уровня титана:

Орбитали внешнего `4p`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у титана есть возможность распарить свои `4s`-электроны.

Рассмотрим электронную конфигурацию следующих частиц: $$ {\mathrm{Br}}^{1-},{\mathrm{Br}}^{3+},{\mathrm{Ti}}^{2+},{\mathrm{Ti}}^{4+}.$$

Как уже говорилось, электронная конфигурация атома брома такова: $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{10}4{s}^{2}4{p}^{5}$$ или $$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}$$. Однако, в химических реакциях бром, как любой неметалл, может принимать электроны, проявляя окислительные свойства и понижать свою степень окисления:

$$\stackrel{\mathbf{0}}{\mathbf{Br}}\mathbf{+}{\mathit{e}}^{\mathbf{-}}\mathbf{=}\stackrel{\mathbf{-1}}{\mathbf{Br}}$$

Тогда, `["Ar"]4s^2  4p^5+e^-  =["Ar"]4s^2  4p^6` или `["Kr"]`.

Может ли атом брома в химической реакции присоединить более одного электрона? Нет, так как вакансий на валентном уровне больше нет.

Если атом брома проявляет восстановительные свойства и отдает электроны, его степень окисления повышается. Например, рассмотрим электронную конфигурацию брома в степени окисления $$ +3$$:

$$ \stackrel{\mathbf{0}}{\mathbf{Br}}\mathbf{-}\mathbf{3}{\mathbf{e}}^{\mathbf{-}}\mathbf{=}\stackrel{\mathbf{+}\mathbf{3}}{\mathbf{Br}}$$

$$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}–3{е}^{-}$$  $$ =\left[\mathrm{Ar}\right]4{s}^{2}4{p}^{2}$$

Сколько всего электронов может отдать атом брома в химической реакции и какую максимальную степень окисления он может проявить? Так как на валентном уровне брома располагаются $$ 7$$ электронов - $$ 4{s}^{2}4{p}^{5}$$ - он может отдать все семь электронов и проявить высшую степень окисления $$ +7$$, равную номеру группы. Кроме неё из положительных степеней окисления он проявляет $$ +1,+3,+5$$, но только в окружении атомов более электроотрицательных элементов - кислорода и фтора, например в составе гипобромит-, бромит-, бромат- и пербомат-анионов: `"BrO"^-`, `"BrO"_2^-`, `"BrO"_3^-` и `"BrO"_4^-`.

При образовании катионов важно помнить, что электроны уходят с самого дальнего (внешнего) от ядра подуровня. 

Атомы металла титана, как атомы любого металла, не обладают окислительной активностью. Металлы никогда не проявляют отрицательных степеней окисления (в соединениях с неметаллами). А вот работать восстановителями, то есть повышать свою степень окисления, отдавая в реакциях электроны, они могут. Рассмотрим образование катионов титана $$ \stackrel{+2}{\mathrm{Ti}}$$ и $$ \stackrel{+4}{\mathrm{Ti}}$$.

Электронная конфигурация атома титана такова: $$ 1{s}^{2}2{s}^{2}2p63{s}^{2}3{p}^{6}3{d}^{2}4{s}^{2}$$ или $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}$$. При образовании $$ \stackrel{+2}{\mathrm{Ti}}$$катиона валентные электроны уходят с самого дальнего от ядра подуровня - с $$ 4{s}^{2}$$:

                         $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}–2{е}^{-}=\left[\mathrm{Ar}\right]3{d}^{2}4{s}^{0},$$

а при образовании $$ \stackrel{+4}{\mathrm{Ti}}$$ с валентного уровня, состоящего из предвнешнего `3d`- и внешнего `4s`-подуровней, уходят все электроны:

 $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}–4{е}^{–}$$$$ =\left[\mathrm{Ar}\right]3{d}^{0}4{s}^{0}$$ или просто `["Ar"]`.

Иногда у учащихся возникает недопонимание: если при заселении элек-тронной оболочки электроны в первую очередь «садятся» на `4s`, а потом на `3d`, то при отдаче электронов порядок должен сохраниться прежний: сначала электроны уйдут с `3d`, и только потом с `4s`. Однако, правило почему-то этот порядок игнорирует. На самом деле логика заключается в следующем: физически подуровни располагаются вокруг ядра в соответствии с возрастанием главного и орбитального квантовых чисел:

$$1s<2s<2p<3s<\mathbf{3}\mathit{p}\mathbf{<}\mathbf{3}\mathit{d}\mathbf{<}\mathbf{4}\mathit{s}\mathbf{<}\mathbf{4}\mathit{p}<5s...$$,

но из-за межэлектронного отталкивания в нейтральном атоме (при равенстве числа протонов и электронов) порядок заполнения подуровней меняется: как уже говорилось, состояние `4s`, например, становится выгоднее `3d`, и энергетическая последовательность заполнения становится такой:

$$1s<2s<2p<3s<\mathbf{3}\mathit{p}\mathbf{<}\mathbf{4}\mathit{s}\mathbf{<}\mathbf{3}\mathit{d}\mathbf{<}\mathbf{4}\mathit{p}<5s...$$.

Но при этом `4s` подуровень остается внешним, то есть наиболее отдаленным от ядра, по сравнению с `3d`! Поэтому при образовании катионов `d`-элементов электроны уходят именно с него.

1. Допустим, имеем ядро атома титана с зарядом `+22` и постепенно по одному и начинаем заполнять окружающее ядро пространство электронами, соблюдая принцип наименьшей энергии, Паули и правило Гунда. Таким образом, заселили $$ 18$$ электронов и получили $$ {}_{22}\mathrm{Ti}^{+4}\left[{}_{18}\mathrm{Ar}\right]3{d}^{0}4{s}^{0}$$. Обращаем внимание, что при этом заряд ядра `(+22)` значительно превышает заряд электронной оболочки $$ (-18)$$, а незаполненные $$ 3{d}^{0}4{s}^{0}$$ орбитали под влиянием возросшего и нескомпенсированного заряда ядра расположатся соответственно

и радиус `3d`-орбитали << радиуса `4s`-орбитали.

Следующие 19-ый и 20-й электроны заселят по одному две более низкие по энергии 3d-орбитали $$ \left({}_{22}\mathrm{Ti}+2\left[{}_{18}\mathrm{Ar}\right]3{d}^{2}4{s}^{0}\right)$$, а потом уже оставшиеся `2` электрона займут `4s`-орбиталь $$ \left({}_{22}\mathrm{Ti}\left[{}_{18}\mathrm{Ar}\right]3{d}^{2}4{s}^{2}\right)$$. При обратном процессе образования катионов электроны уходят сначала с более высокой по энергии `4s`-орбитали, и никакого противоречия не наблюдается.)

2. В ряду `1s<2s<2p<3s<3p<4s<3d<4p<5s`, иллюстрирующем правило Клечковского, энерия `4s<3d`. Однако это справедливо только для атомов `"K"` и `"Ca"`. Во всех случаях, когда `d`-орбитали заселены (хотя бы одним электроном) их энергия ниже (или равна у $$ \mathrm{Sc}$$) энергии `s`-орбитали и энергетическая разница между ними увеличивается с ростом заряда ядра (числом `e` на `d`-орбиталях, см таблицу энергетических уровней). Тем не менее правило Клечковского очень важно, поскольку даёт возможность определить, на каких именно орбиталях в атомах находятся электроны (ничего не говоря об энергии валентных орбиталей).

Выводы

Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

  • Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, `s`-элементы находятся во всех периодах, `p`-элементы - во втором и последующих, `d`-элементы - в четвёртом и последующих и `f`-элементы - в шестом и седьмом периодах.
  • Номер периода совпадает с главным квантовым числом внешних электронов атома.
  • Номер группы, как правило, указывает на число электронов, которые могут участвовать в образовании химических связей (валентных электронов). В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предвнешних подуровней. Это является основным различием в свойствах элементов главных и побочных подгрупп.
  • `s`- и `p`-элементы образуют главные подгруппы (валентными являются электроны внешних `s`- и `р`-подуровней), `d`-элементы - побочные подгруппы (валентными являются электроны предвнешнего `d`- и внешнего `s`-подуровней), `f`-элементы образуют семейства лантаноидов и актиноидов и также являются элементами побочной подгруппы третьей группы (валентными электронами являются электроны предпредвнешнего `f`- и внешнего `s`-подуровней). Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона). То есть у элементов одной группы одинаковое число электронов на валентном уровне, а у элементов одной подгруппы - одинаковое число электронов и одинаковое строение валентного уровня.
  • Элементы с валентными `d`- или `f`-электронами называются переходными.