В проточном калорифере исследуемый газ пропускают по трубопроводу и нагревают электронагревателем (см. рис. $$ 25$$). При этом измеряют количество газа, пропускаемого через трубопровод в единицу времени, и температуру газа перед и за нагревателем. При продувании воздуха в калориметре температура за нагревателем оказалось на величину $$ \Delta Т=5$$ К выше, чем перед нагревателем. Массовый расход воздуха $$ {m}_{\tau }=720$$ кг/ч. Определить мощность нагревателя $$ N$$. Считать, что вся теплота, выделяемая нагревателем, отдаётся газу.
Рассмотрим часть газа, находящегося в трубе в той части, где расположен нагреватель (между сечениями $$ 1$$ и $$ 2$$) (рис. $$ 26$$). Первый термометр $$ \left({Т}_{1}\right)$$ находится перед рассматриваемой областью, а второй $$ \left({Т}_{2}\right)$$ за ней.
Запишем первый закон термодинамики для выделенной части газа:
$$ \Delta Q= \Delta U+{A}^{\text{'}}$$.
Теперь рассмотрим подробнее каждое слагаемое в этом уравнении.
Количество теплоты, получаемое газом от нагревателя за время $$ \Delta t$$, можно записать так:
$$ \Delta Q=N \Delta t$$.
Изменение внутренней энергии для $$ \Delta \nu $$ молей воздуха, прошедших через выделенную область за время $$ \Delta t$$, определяется выражением
$$ \Delta U={\displaystyle \frac{i}{2}}\nu R({T}_{2}-{T}_{1})$$.
Работа $$ {A}^{\text{'}}$$ газа над окружающими телами складывается из работы $$ {A}_{1}^{\text{'}}$$ газа при перемещении его левой границы (сечение $$ 1$$, перемещение $$ 1–{1}^{\text{'}}\text{'}$$) и работы $$ {A}_{2}^{\text{'}}$$ газа при перемещении его правой границы (сечение $$ 2$$, перемещение $$ 2–{2}^{\text{'}}\text{'}$$):
$$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}$$.
Заметим, что `A_1^'<0` (газ в этой области сжимается), а $$ {A}_{2}^{\text{'}}>0$$ (газ в области расширяется).
Процесс совершения работы слева идёт при постоянной температуре $$ {Т}_{1}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к введению в рассматриваемую область дополнительно $$ \Delta {\nu }_{1}$$ моль газа (показан как закрашенный участок справа от сечения $$ 1$$), занимающих объём $$ \Delta {V}_{1}$$. Для $$ {A}_{1}^{\text{'}}$$ получаем:
$$ {A}_{1}^{\text{'}}=-{p}_{1} \Delta {V}_{1}=-\Delta {\nu }_{1·}R·{T}_{1}$$.
Процесс совершения работы справа идёт при постоянной температуре $$ {Т}_{2}$$ и постоянном внешнем давлении `p_1`. Совершение этой работы приводит к выведению из рассматриваемой области объёма газа $$ \Delta {\nu }_{2}$$ моль газа (показан на рисунке выделенным объёмом справа от сечения $$ 2$$), занимающих объём $$ \Delta {V}_{2}$$. Для $$ {A}_{2}^{\text{'}}$$ получаем:
$$ {A}_{2}^{\text{'}}={p}_{2} \Delta {V}_{2}= \Delta {\nu }_{2}·R·{T}_{2}$$.
При стационарном процессе нагрева воздуха количество вошедшего воздуха равно количеству вышедшего: $$ \Delta {\nu }_{1}= \Delta {\nu }_{2}= \Delta \nu $$. Тогда работа $$ {A}^{\text{'}}$$ равна
$$ {A}^{\text{'}}={A}_{1}^{\text{'}}+{A}_{2}^{\text{'}}=-\Delta \nu R{T}_{1}+ \Delta \nu R{T}_{2}= \Delta \nu R({T}_{2}-{T}_{1})$$,
С учётом вышеизложенного перепишем первой закон термодинамики для рассматриваемой ситуации:
$$ N \Delta T={\displaystyle \frac{i}{2}} \Delta \nu R({T}_{2}-{T}_{1})+\Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})$$.
Любопытно заметить, что процесс нагрева воздуха проходит так, что его описание совпадает с процессом изобарного нагрева.
Теперь подробнее остановимся на массовом расходе воздуха $$ {m}_{\tau }$$.
$$ {m}_{\tau }={\displaystyle \frac{\Delta m}{ \Delta t}}={\displaystyle \frac{\Delta \nu M}{ \Delta t}}$$, тогда $$ \Delta \nu ={m}_{\tau }{\displaystyle \frac{\Delta t}{M}}$$,
$$ N·\Delta t=({\displaystyle \frac{i}{2}}+1) \Delta \nu R({T}_{2}-{T}_{1})=({\displaystyle \frac{i}{2}}+1){m}_{\tau }{\displaystyle \frac{\Delta t}{M}}R({T}_{2}-{T}_{1})$$.
Откуда получаем ответ:
$$ N=({\displaystyle \frac{i}{2}}+1){\displaystyle \frac{{m}_{\tau }}{M}}R({T}_{2}-{T}_{1})=$$
$$ =\left(\mathrm{3,5}\right){\displaystyle \frac{720\mathrm{кг}}{360с \mathrm{0,029}\frac{\mathrm{кг}}{\mathrm{моль}}}}\mathrm{8,31}{\displaystyle \frac{\mathrm{Дж}}{\mathrm{моль}·\mathrm{К}}}5 \mathrm{K} \approx 1000 \mathrm{Вт}$$.