
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Одним из разделов школьной математики является изучение функциональных зависимостей или функций.
Напомним, что функцией математики называют зависимость величины от одной или нескольких других величин. При этом независимые переменные величины принято называть аргументами, а зависимые – функциями. При этом важно не забывать, что каждому значению аргумента (или аргументов) ставится в соответствие единственное значение зависимой переменной (функции). Наглядно функции изображают с помощью графика – специального набора точек на плоскости. Пусть имеется функция $$ y=f\left(x\right)$$ одной переменной $$ x$$. На плоскости введём декартову систему координат $$ xOy$$ и рассмотрим множество точек $$ G$$ с координатами $$ (x,f(x\left)\right)$$, где $$ x$$ принадлежит некоторому множеству $$ M$$, которое называется областью определения функции. А множество $$ G$$ называется графиком функции $$ y=f\left(x\right)$$ (рис. 1).
В школьном курсе математики вы изучали такие типы функций:
График линейной функции можно построить по двум точкам, поскольку это прямая линия. Однако стоит заметить, что не всякая прямая будет графиком линейной функции. Если взять вертикальную прямую $$ x=a$$, то такая линия не может быть графиком никакой функции (рис. 2).
Действительно, здесь одному значению переменной $$ x$$ ставится в соответствие несколько значений переменной $$ y$$. Итак,
прямая на плоскости $$ xOy$$ – график некоторой линейной функции тогда и только тогда, когда она не вертикальна.
Напомним геометрический смысл коэффициентов $$ k$$ и $$ b$$ в уравнении прямой $$ y=kx+b:$$ $$ k=\mathrm{tg} \alpha $$ – тангенс угла наклона прямой к оси $$ Ox$$, $$ b$$ – ордината точки пересечения прямой с осью $$ Oy$$. Поэтому две невертикальные прямые $$ y={k}_{1}x+{b}_{1}$$ и $$ y={k}_{2}x+{b}_{2}$$:
Условие перпендикулярности прямых несложно пояснить. Рассмотрим пару прямых, параллельных данным и проходящих через начало координат (см. рис. 3).
Из перпендикулярности этих прямых следует, что $$ \alpha =\phi $$. Поэтому если точка $$ A({a}_{0};{b}_{0})$$ лежит на первой прямой, то точка $$ B(-{b}_{0};{a}_{0})$$ лежит на второй. Ясно, что можно подобрать $$ {a}_{0}\ne 0$$ и $$ {b}_{0}\ne 0$$, откуда $$ {k}_{1}{k}_{2}={\displaystyle \frac{{b}_{0}}{{a}_{0}}}·{\displaystyle \frac{{a}_{0}}{-{b}_{0}}}=-1$$.
Теперь напомним основные сведения о функциях вида $$ f\left(x\right)=a{x}^{2}+bx+c$$.
Сразу отметим, что такая функция квадратична только при $$ a\ne 0$$. В случае же $$ a=0$$ эта функция квадратичной уже не будет. Если в задаче возможна такая ситуация, то случай $$ a=0$$ обязательно нуждается в отдельном рассмотрении. Нужно всегда обращать на это внимание!
Будем считать, что $$ a\ne 0$$. Тогда графиком функции $$ y=f\left(x\right)$$ будет парабола. Такие графики принято строить схематично, учитывая следующее:
Теперь поговорим о графиках степенной функции. Легко убедиться, что график функции
$$ f\left(x\right)={x}^{n}$$ ($$ n\in N$$) при $$ x\ge 0$$
выглядит так, как показано на рис. 4. Для чётных $$ n$$, очевидно, верно $$ f(-x)=f\left(x\right)$$, а для нечетных $$ n$$ верно $$ f(-x)=-f\left(x\right)$$ для всякого $$ x$$. Поэтому в зависимости от чётности $$ n$$ графики функции $$ f\left(x\right)={x}^{n}$$ имеют такой вид (рис. 5 и 6).
Напомним, что функция, область допустимых значений которой симметрична относительно начала координат, называется чётной, если справедливо равенство $$ f(-x)=f\left(x\right)$$ и нечётной, если $$ f(-x)=-f\left(x\right)$$. Наример, нетрудно проверить, что функция
$$ f\left(x\right)=|x-2|+|x+2|$$ – чётная,
а функция
$$ g\left(x\right)=|x-2|-|x+2|$$ – нечётная.
В случае нечётного $$ n$$ график симметричен относительно начала координат. Такие функции называют нечётными (рис. 5). Если же $$ n$$ четно, то график симметричен относительно оси ординат. Такие функции называют чётными (рис. 6).
Для построения графика $$ f\left(x\right)=\sqrt[n]{x}$$ нужно записать уравнение $$ y=\sqrt[n]{x}$$ или $$ x={y}^{n}$$. Это означает, что график имеет вид линии $$ y={x}^{n}$$, но при этом $$ x$$ и $$ y$$ меняются местами. Для чётных $$ n$$ при этом еще нужно учесть ОДЗ $$ x\ge 0$$. Поэтому график функции $$ f\left(x\right)=\sqrt[n]{x}$$ имеет следующий вид в зависимости от чётности натурального числа $$ n$$ (рис. 7, 8):
Рассмотрим теперь функции вида $$ f\left(x\right)=\frac{k}{x}$$.
Поскольку функция $$ f$$ нечётна, то график должен быть симметричным относительно начала координат. Схематический вид графика этой функции показан на рисунке 9.
Если $$ k<0$$, то график функции $$ y={\displaystyle \frac{k}{x}}$$ имеет примерно такой же вид, и его можно получить симметрией относительно оси $$ Oy$$ из графика функции $$ y={\displaystyle \frac{\left|k\right|}{x}}$$ (рис. 10).
Покажем, как меняется график функции $$ f\left(x\right)={\displaystyle \frac{k}{x}}$$ при изменении параметра $$ k$$. Если $$ \left|{k}_{2}\right|>\left|{k}_{1}\right|$$, то линия $$ f\left(x\right)={\displaystyle \frac{{k}_{2}}{x}}$$ более удалена от осей координат, чем $$ f\left(x\right)={\displaystyle \frac{{k}_{1}}{x}}$$. Схематично это изображено на рис. 11, 12.