7. Примеры решения задач

`

Задача 1

В электрический чайник налили холодную воду при температуре  `t_1 = 10^@ "C"`. Через время `tau =10` мин после включения чайника вода закипела. Через какое время она полностью испарится? Потерями теплоты пренебречь. Удельная теплоёмкость воды `c_(sf"в") = 4200  sf"Дж"//(sf"кг" * sf"К")`, удельная теплота парообразования воды `L_(sf"в") =2,26 *10^6  sf"Дж"//sf"кг"`.

Решение

Для испарения воды массой `m` при температуре кипения необходимо количество теплоты `Q_1 =mL_(sf"в")`, где `L_(sf"в")` - удельная теплота парообразования воды.

Пусть воде от нагревателя чайника в единицу времени поступает количество теплоты `q`, а `tau_1` - время, необходимое для испарения всей воды, нагретой до температуры кипения. Тогда справедливо соотношение

`Q_1 = mL_(sf"в") =q tau_1`.

Количество теплоты `Q_2`, поступившее от нагревателя за время `tau` и нагревшее воду от начальной температуры  `t_1 = 10^@ "C"` до температуры кипения `t_2 =100^@ "C"`, равно

`Q_2 = q tau = c_(sf"в")m (t_2 - t_1)`,

где `c_(sf"в")` - удельная теплоёмкость воды. Отсюда для массы воды получаем

`m= (q tau)/(c_(sf"в") (t_2 - t_1))`.

Подставляя это выражение в соотношение для `Q_1`, имеем

`q*tau_1 = (L_(sf"в")q tau)/(c_(sf"в") (t_2 - t_1))`.

Отсюда для времени испарения воды получаем

$$ {\tau }_{1}={\displaystyle \frac{{L}_{\mathrm{в}}·\tau }{{c}_{\mathrm{в}}·\left({t}_{2}-{t}_{1}\right)}}={\displaystyle \frac{\mathrm{2,26}·{10}^{6} \mathrm{Дж}/\mathrm{кг}·600 \mathrm{с} }{\mathrm{4,2}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·90 \mathrm{К}}}\approx 1 \mathrm{час}.$$

Задача 2

Найдите расход бензина автомобиля (в литрах) на `L = 100` км пути при скорости `v=90` км/ч. Мощность двигателя автомобиля `P=30` кВт, коэффициент полезного действия `eta =25%`.

Решение

Количество теплоты `Q`, которое выделяется при сгорании бензина объёмом `V`, зависит от удельной теплоты сгорания `q` данного вида топлива (для бензина `q=46 sf"МДж"//sf"кг"`)  и массы `m` сгоревшего топлива. С учётом того, что `m=rho V` (для бензина `rho = 700  sf"кг"//sf"м"^3`), получаем

`Q=qm=q rho V`.

Часть энергии, выделяемой при сгорании бензина, используется для создания полезной мощности `P`. Если двигатель, развивая постоянную мощность `P`, проработал в течение времени `tau`, то совершённая им работа `A` равна `P tau`. Эффективность преобразования теплоты `Q` сгорания топлива в механическую работу `A` двигателя характеризуется коэффициентом полезного действия (КПД) двигателя `eta`

`eta=A/Q * 100% = (P tau)/Q *100% = (P tau)/(q rho V) * 100%`.

Время работы двигателя `tau = L//v`. Из полученных соотношений для величины расхода бензина находим

`V = (100%)/(eta) * (P*L)/(q*rho *v) ~~(100%)/(25%) * (30*10^3  sf"Дж"//sf"c" * 10^5 sf"м")/(46 * 10^6 sf"Дж"//sf"кг" * 700 sf"кг"//sf"м"^3 * 25 sf"м"//sf"с") ~~14,9 sf"л"`.

Следовательно, расход бензина для автомобиля с указанными характеристиками составляет примерно `15` литров на `100` км пути.

Задача 3

При выстреле из ружья стальная дробь массой `m=45` г вылетает со скоростью `v=600` м/с. Считая, что `80%` энергии, высвободившейся при сгорании порохового заряда массой `M=9` г, переходит в кинетическую энергию пули и её внутреннюю энергию, определите, на сколько градусов повысилась температура пули. Удельная теплота сгорания пороха `q=3 sf"МДж"//sf"кг"`, удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж" //(sf"кг" * sf"К")`.

Решение

При сгорании пороха массой `M` выделяется энергия (теплота) `Q=qM`, где `q` -удельная теплота сгорания пороха. По условию задачи `80%` этой энергии переходит в кинетическую энергию `K` дроби и её внутреннюю энергию. Следовательно, внутренняя энергия дроби изменяется, и пусть `Delta U` - величина этого изменения. Тогда справедливо следующее соотношение

`0,8 Q=K+Delta U`.

Перепишем его, учитывая выражения для кинетической энергии дроби `K=mv^2 //2` и изменения внутренней энергии `Delta U = c_(sf"ст") mDelta t`, где `Delta t` - изменение температуры дроби (искомая величина). Получаем

`0,8 qM=(mv^2)/(2) +c_sf"ст" mDelta t`.

Отсюда для изменения температуры находим

`Delta t= (1,6 qM - mv^2)/(2 c_(sf"ст") m) = 600 sf"К"`.

Задача 4

Как велика масса стальной детали, нагретой предварительно до `500^@ "C"`, если при опускании её в калориметр, содержащий `18,6` л воды при температуре `13^@ "C"`, последняя нагрелась до `35^@ "C"`. Теплоёмкостью калориметра и потерями теплоты на испарение воды пренебречь. Удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж"//(sf"кг" * sf"К")`.

Решение

Во время рассматриваемого теплового процесса стальная деталь массой `M_(sf"ст")` охлаждается от температуры `t_1 =500^@ "C"` до температуры `t=35^@ "C"`, отдавая при этом количество теплоты `Q_(sf"ст")`:

`Q_(sf"ст") = c_(sf"ст") M_(sf"ст") (t_1 -t)`.

За это же время вода массой `M_sf"в" =18,6` кг нагревается от температуры `t_2 =13^@ "C"` до температуры `t=35^@ "C"`, получив при этом количество теплоты `Q_(sf"в")`:

`Q_sf"в" = c_sf"в" M_sf"в" (t-t_2)`.

Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

$$ {Q}_{\mathrm{отд}}={Q}_{\mathrm{ст}}={c}_{\mathrm{ст}}{M}_{\mathrm{ст}}\left({t}_{1}-t\right)={Q}_{\mathrm{пол}}={Q}_{\mathrm{в}}={c}_{\mathrm{в}}{M}_{\mathrm{в}}\left(t-{t}_{2}\right)$$.

Здесь учтено, что по условию задачи испарением воды можно пренебречь, т. е. теплота, выделяемая при охлаждении стальной детали, идёт только на нагревание воды.

Из последнего соотношения для массы стальной детали получаем

$$ {M}_{\mathrm{ст}}={\displaystyle \frac{{с}_{\mathrm{в}}{M}_{\mathrm{в}}\left(t-{t}_{2}\right)}{{c}_{\mathrm{ст}}\left({t}_{1}-t\right)}}={\displaystyle \frac{4200 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·\mathrm{18,6} \mathrm{кг}·\left(35°\mathrm{C}-13°\mathrm{C}\right)}{500 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·\left(500°\mathrm{C}-35°\mathrm{C}\right)}}\approx \mathrm{7,4} \mathrm{кг}$$.

Задача 5

В калориметр, где в состоянии теплового равновесия находился мокрый снег (смесь льда и воды) массой `m=250` г, долили `M=1` кг воды при температуре `t_1 =20^@ "C"`. После того, как снег растаял, и установилось тепловое равновесие, в калориметре оказалась вода при температуре `t_2 =5^@ "C"`. Сколько воды содержалось в снегу? Потерями теплоты и теплоёмкостью калориметра пренебречь.

Решение

Конечное агрегатное состояние системы по условию задачи - вода. Мокрый снег (смесь льда и воды при температуре `t_0 =0^@ "C"`) получает теплоту от находящейся в калориметре воды.

Часть теплоты, подведённой мокрому снегу, идёт на плавление находящегося в снегу льда (пусть масса льда `m_(sf"л")`). Для плавления льда при температуре плавления необходимо количество теплоты `Q_sf"пол,1"`:

`Q_(sf"пол,1") = m_sf"л" lambda_sf"л"`.

На нагревание получившейся из мокрого снега воды массой `m=250` г от температуры `t_0 = 0^@ "C"` до температуры `t_2 = 5^@ "C"` требуется количество теплоты `Q_sf"пол,2"`

`Q_sf"пол,2" = c_sf"в" m (t_2 - t_0)`.

Таким образом, суммарное количество теплоты `Q_sf"пол"`, получаемое мокрым снегом, а затем водой, равно

`Q_sf"пол"=Q_sf"пол,1" + Q_sf"пол,2"=m_(sf"л") lambda_(sf"л") + c_(sf"в") m (t_2 - t_0)`.

Вода, первоначально находившаяся в калориметре, охлаждается от температуры `t_1 = 20^@ "C"` до температуры `t_2 =5^@ "C"`, отдавая при этом количество теплоты `Q_sf"отд"`

`Q_sf"отд" = с_sf"в" M (t_1 - t_2)`.

Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

`Q_sf"отд" = с_sf"в" M (t_1 - t_2)=Q_sf"пол" = m_sf"л" lambda_sf"л" + c_sf"в" m (t_2 - t_0)`.

Отсюда для массы  льда, находившегося в мокром снегу, получаем

`m_sf"л" = (Mc_sf"в" (t_1 - t_2) - mc_sf"в" (t_2 - t_0))/(lambda_sf"л") ~~170 sf"г"`.

Масса же воды, содержавшейся в мокром снегу, равна `78` г.

Пример 6

В холодную воду, взятую в количестве `12` кг, впускают `1` кг водяного пара при температуре `t_sf"п" = 100^@ "C"`. Температура воды после конденсации в ней пара поднялась до `t=70^@ "C"`. Какова была первоначальная температура воды? Потерями теплоты пренебречь.

Решение

Попав в холодную воду, пар массой `m_sf"п" = 1` кг конденсируется, выделяя количество теплоты `Q_1 = m_sf"п"L_sf"в"`. Здесь `L_sf"в"` - удельная теплота конденсации водяного пара. Получившаяся при конденсации пара вода охлаждается от температуры  `t_sf"п" =100^@ "C"` до `t=70^@ "C"`, отдавая холодной воде количество теплоты `Q_2 = c_sf"в" * m_sf"п" * (t_sf"п" - t)`.

Для нагревания холодной воды массы `m_sf"в" =12` кг от начальной температуры `t_sf"в"` до температуры `t=70^@ "C"` требуется количество теплоты `Q_3 = c_sf"в" * m_sf"в" * (t-t_sf"в")`.

Составим уравнение теплового баланса для рассматриваемого теплового процесса:

`Q_sf"отд" = Q_1 + Q_2 = L_sf"в" m_sf"п" + c_sf"в" m_sf"п" (t_sf"п" - t) = Q_sf"пол" = Q_3 = c_sf"в" m_sf"в" (t-t_sf"в")`.

Решая полученное уравнение, для начальной температуры воды находим:

`t_sf"в" = t- (L_sf"в" m_sf"п") / (c_sf"в" m_sf"в")  -   (m_sf"п")/(m_sf"в") * (t_sf"п" - t) = 23^@ "C"`.

Задача 7*

В калориметр, содержащий `200` г воды при температуре `8^@"C"`, опускают `100` г льда, температура которого равна `-20^@"C"`. Какая температура установится в калориметре? Каково будет содержимое калориметра после установления теплового равновесия? Теплоёмкостью калориметра пренебречь.

Решение

Конечное состояние не очевидно. Требуется анализ.

Чтобы нагреть массу `m_"л"=0,1` кг льда от `t_"л"=-20^@"C"` до `t_0=0^@"C"`, надо было бы затратить количество теплоты

`Q_1=c_"л"m_"л"(t_0-t_"л")=4200` Дж.

Чтобы расплавить весь лёд при `0^@"C"` потребовалось бы количество теплоты

`Q_2=lambda_"л"m_"л"=33600` Дж.

Если вся вода охладится от `t_"в"=8^@"C"` до `t_0=0^@"C"`, то выделится количество теплоты

`Q_3=c_"в"m_"в"(t_"в"-t_0)=6720` Дж.

Сравнивая полученные значения для `Q_1`, `Q_2`, `Q_3`, приходим к выводу, что `Q_3` хватит на нагрев всего льда от `t_"л"` до `t_0` и плавления только части льда массой `m_1`. Уравнение теплового баланса

`Q_3=Q_1+m_1lambda_"л"`.

Отсюда

`m_1=(Q_3-Q_1)/(lambda_"л")=7,5` г.

Итак, в калориметре будет смесь из `207,5` г воды и `92,5` г льда при `0^@"C"`.