Решите систему уравнений $$ \left\{\begin{array}{l}\left|x\right|+2y=\mathrm{1,5},\\ 2x-4\left|y\right|=3.\end{array}\right.$$
По определению модуля числа
$$\left|x\right|=\left\{\begin{array}{l}x,\;\;\;x\geq0,\\-x,\;x<0,\end{array}\right.\;\;\left|y\right|=\left\{\begin{array}{l}y,\;\;\;\;y\geq0,\\-y,\;y<0.\end{array}\right.$$
Значит нужно рассмотреть 4 случая:
1) `x>=0`, `y>=0`;
2) `x>=0`, `y<0`;
3) `x<0`, `y>=0`;
4) `x<0`, `y<0`.
1 случай. `x>=0`, `y>=0`, система имеет вид:
$$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}8y=0,\\ x+2y=\mathrm{1,5},\end{array}\right.\left\{\begin{array}{l}x=\mathrm{1,5},\\ y=0.\end{array}\right.$$
Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.
2 случай. `x>=0`, `y<0` система имеет вид:
$$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ x+2y=\mathrm{1,5},\end{array}\right. x+2y=\mathrm{1,5}$$.
Получим равносильную систему, уравнения которой совпадают. Значит, исходная система равносильна каждому из данных уравнений. Следовательно, система имеет бесконечно много решений, где общие решения можно записывать в виде `(1,5-2y;y)`, где `y<0`. Очевидно, что при этом `x=1,5-2y>=0`.
3 случай. `x<0`, `y>=0` система имеет вид:
$$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}-2x+4y+2x-4y=6,\\ -x+2y=\mathrm{1,5}.\end{array}\right.$$
Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.
4 случай. `x<0`, `y<0` система имеет вид:
$$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}4x=0,\\ -x+2y=\mathrm{1,5},\end{array}\right. \left\{\begin{array}{l}x=0,\\ y=\mathrm{0,75}.\end{array}\right.$$
Значение `x` не удовлетворяет заданному условию: неравенство `0<0` логично. Значит, и в этом случае решений тоже нет.
Обобщая все 4 случая и учитывая, что пара чисел `(1,5;0)` имеет вид `(1,5-2y;y)` при `y=0`, мы можем записать множество решений исходной системы.
`(1,5-2y;y)`, где `y<=0`.