§ 5. Виды деформаций, закон Гука

Из наличия упругих свойств твёрдых тел можем заключить, что между молекулами и атомами существуют как силы притяжения, так и силы отталкивания. Исследования показали, что эти силы сильно зависят от расстояния между молекулами.

Если две молекулы разместить так, чтобы расстояние между их центрами составило примерно два радиуса, то сумма сил притяжения и отталкивания равна нулю.

При этом сила отталкивания представлена на графике зависимости силы от расстояния в виде кривой $$ f=a/{r}^{13}$$, а сила притяжения в виде другой кривой $$ f=-b/{r}^{7}$$ (рис. 7). Сумма этих графиков и есть сила взаимодействия между молекулами. По графику видно, что при сближении молекул на расстояние, меньшее $$ 2{r}_{0}$$ между центрами, возникает быстро растущая сила отталкивания, а при удалении этих молекул возникает сначала растущая (по модулю) сила притяжения, а потом эта сила начинает убывать и стремится к нулю на больших расстояниях.

рис. 7

Теперь понятно, что даже если сила притяжения или отталкивания между парой молекул мала, то при деформации макроскопического тела таких пар сил возникнет колоссально много, и они дадут в сумме макроскопическую силу упругости, компенсирующую внешнюю силу.

Деформацией

называют изменение формы и размеров тела под действием внешних сил.

Все деформации можно разделить на четыре вида: сжатия – растяжения, изгиб, сдвиг и кручение.

Деформация сжатия-растяжения.

Первоначальная длина тела равна $$ {l}_{0}$$, а конечная длина $$ {l}_{\mathrm{к}}$$. При такой деформации длина тела изменяется на величину:

`Deltal=l_"k"-l_0` - абсолютное удлинение

Величина деформации так же характеризуется безразмерной величиной:

`varepsilon =(Deltal)/l_0` - относительное удлинение.

Примеров таких деформаций очень много: ножки стула, стола, стены зданий, некоторые кости скелета, мачта парусника во время штиля и др.

Робертом Гуком экспериментально было установлено, что:


`(F_"упр")_X=-kDeltal` - закон Гука в интегральной форме (рис. 8).


`k` - коэффициент упругости или жёсткости тела.

Рис. 8


Сила упругости, возникающая при деформации, прямо пропорциональна смещению частиц и направлена в сторону, противоположную смещению частиц при деформации.

Закон Гука стал средством для измерения сил. Т. к. чтобы определить величину (модуль) какой - либо силы, необходимо сравнить её с эталоном. Две силы считаются равными по модулю и противоположно направленными, если при их одновременном действии на одно и то же тело его общее ускорение равно нулю (скорость тела не изменяется). Таким образом, можно сравнивать силы и измерять их (если одну из них выбрать в качестве эталона).

На практике пружину, подчиняющуюся закону Гука, градуируют на разные значения силы для измерения силы. Далее воздействуют ею на тело так, чтобы тело стало двигаться равномерно. В этом состоянии сила, ранее действовавшая на тело, стано вится равной силе, действующей со стороны пружины, определяемой по граду и рованной шкале. Прибор для измерения силы называется динамометром.

Пример 4

К резиновому шнуру подвесили груз, под действием которого шнур растянулся на $$ 4 \mathrm{см}$$. Затем шнур сложили вдвое, закрепив сложенные концы вверху, а к середине снова подвесили тот же груз. На сколько шнур растянется во втором случае?

Решение

Если шнур в первом случае растянулся на $$ 4 \mathrm{см}$$, то каждая половина шнура растянулась на $$ 2 \mathrm{см}$$, а половины шнура были соединены между собой последовательно. Сила упругости внутри шнура везде одинакова и равна весу груза. Коэффициент жёсткости каждой половины можно представить в виде: $$ {k}_{2}={\displaystyle \frac{mg}{{x}_{0}/2}}$$.

Во втором случае половинки шнура соединены между собой параллельно, следовательно, условие равновесия груза теперь выглядит так:

\[mg = 2\cdot k_2x_2, \ \mathrm{откуда}\ x_2 = \dfrac{mg}{2k_2} = \dfrac{mg}{2\frac{mg}{x_0/2}} = \dfrac{x_0}{4} = 1\ \mathrm{см}.\]