1.4. Работа сил электростатического поля и потенциальная энергия заряженных частиц. Потенциал, разность потенциалов


Пусть точечный заряд `q` находится в однородном электрическом поле с напряжённостью `vecE`. (Обобщение на случай неоднородного поля см. ниже.) Тогда со стороны поля на него действует сила `vecF=qvecE`. Рассмотрим перемещение этого заряда из точки `1`, характеризуемой радиус - вектором `vecr_1`, в точку `2` - с радиус - вектором `vecr_2` по, вообще говоря, криволинейной траектории (рис. 11). Мысленно разобьём всю траекторию на большое число малых перемещений  `Deltavecr_i`, так что `Deltavecr=vecr_2-vecr_1=sum_i Deltavecr_i`, где все векторы `Deltavecr_i`  считаем сложенными по правилу многоугольника. 

Работой  силы со стороны электрического  поля  при  перемещении заряда `q` из точки  `1`  в  точку `2`  называют  величину  (сумму работ на  отдельных  участках)

                                                   `A_(12)=sum_i vecF_i Deltavecr_i`,                              (1.4.1.)

где `vecF_i` - сила,  действующая на заряд на малом участке `Deltavecr_i`, `vecF_iDeltavecr_i` - скалярное произведение векторов. В нашем случае (однородного электрического поля) сила на всех участках одна и та же,  `vecF=qvecE`, поэтому получаем

         `A_(12)=sum_i vecF_i Deltavecr_i= qvecE sum_i Deltavecr_i=qvecE(vecr_2-vecr_1)`.      (1.4.2)

Заметим, что работа силы электростатического поля (1.4.2) определяется лишь начальной и конечной точками (двумя радиус-векторами `vecr_1` и `vecr_2`) и не зависит от конкретной траектории, по которой двигался заряд (в ответ вошла лишь разность этих векторов). Силы, обладающие тем свойством, что работа этих сил не зависит от траектории, называют консервативными силами, а соответствующие поля - потенциальными полями. Не все силы обладают этим свойством; пример неконсервативной силы - сила трения. Другой важный пример не потенциального поля (и неконсервативной силы) - изменяющееся со временем электрическое поле.

По общей теореме механики изменение кинетической энергии заряда равно сумме работ всех сил:

                                           `(mv_2^2)/2 - (mv_1^2)/2 =A_(12)^("всех сил")`.                         (1.4.3)

Если заряд двигался только под действием сил электрического поля (не было никаких ниточек, за которые бы мы тянули заряд, не было силы трения и др.), то вместо (1.4.3) (и согласно (1.4.2)) имеем:

                                         `(mv_2^2)/2 - (mv_1^2)/2 =qvecE(vecr_2-vecr_1)`.                        (1.4.4)

Последнее равенство перепишем ещё в форме

                                        `(mv_2^2)/2 -qvecEvecr_2= (mv_1^2)/2-qvecEvecr_1`,                (1.4.4')

которая допускает следующую важную трактовку. Скажем, что заряд `q` в однородном электростатическом поле обладает потенциальной энергией

                                                          `Pi(vecr)=-qvecEvecr+Pi_0`,                                          (1.4.5)

где `Pi_0` - произвольная константа. Тогда с учётом того, что `K=(mv^2)/2` - кинетическая энергия  заряда, равенство (1.4.4’) – это просто  закон  сохранения энергии:

                                                             `K_2+Pi_2=K_1+Pi_1`,                                              (1.4.6)

т. е. в процессе движения сумма кинетической и потенциальной энергий не изменяется (сохраняет своё значение).

Если приписать точке `A` с радиус-вектором `vecr_0` потенциальную энергию, равную нулю, то это эквивалентно выбору константы `Pi_0=+qvecEvecr_0`. Выбрав в качестве точки  `A` начало координат `(vecr_0=0)`, получаем `Pi_0=0` и `Pi(vecr)=-qvecEr`.

Важнейшим понятием в учении об электричестве является потенциал. Перепишем выражение для работы сил электростатического поля в виде

`A_(12)=qvecE(vecr_2-vecr_1)=Pi_1-Pi_2=q(varphi_1-varphi_2)`,                     (1.4.7)

введя потенциал однородного электростатического поля по формуле

                                                      `varphi(vecr)=-vecEvecr+varphi_0`,                                     (1.4.8)

`varphi_0` - произвольная постоянная.

Записав (1.4.8) в виде `varphi(vecr)=-(+1)vecEvecr+varphi_0`, можно чисто формально (в согласии с (1.4.5)) трактовать потенциал как потенциальную энергию единичного положительного заряда `(+1)` в электрическом поле. Важно, однако, помнить, что потенциал и потенциальная энергия имеют разные размерности. В силу равенства (1.4.7) и, соответственно,                    

                                                                    `varphi=Pi//q`,                                                             (1.4.9)

потенциал измеряется в единицах Дж/Кл = В (вольт).

По формуле (1.4.8) найдём ещё изменение потенциала при переходе от одной точки поля к другой - с радиус-векторами `vecr_1` и `vecr_2`:

 `Deltavarphi=varphi_2-varphi_1=varphi(vecr_2)-varphi(vecr_1)=-vecE(vecr_2-vecr_1)=-vecEDeltavecr`.     (1.4.10)

Заметим, что если перемещение перпендикулярно электрическому полю, `Deltavecr_|_vecE`, то скалярное произведение `vecEDeltavecr=0`, т. е. `Deltavarphi=0`: перемещаясь в плоскости перпендикулярно вектору напряжённости электрического поля `vecE`, переходим от одной точки к другой с таким же потенциалом. О таких плоскостях (в общем случае – о поверхностях) говорят как об эквипотенциальных поверхностях.

А как будет изменяться потенциал при переходе от одной эквипотенциальной плоскости к другой? Рассмотрим перемещение вдоль электрического поля `Deltavecr``||``vecE`. Направим ось `X` параллельно электрическому полю (не обязательно по полю, м. б., и против поля, так что проекция `E_x` вектора `vecE` на ось `X` может иметь любой знак). Согласно основным свойствам скалярного произведения  векторов `(vecavecb=|veca|*|vecb|cosalpha=a_xb_x+a_yb_y+a_zb_z)` имеем

                                                                 `varphi(x)=-E_x+varphi_0`,                                (1.4.8')

а для приращения потенциала

`Deltavarphi=varphi_2-varphi_1=varphi(x_2)-varphi(x_1)=-E_x(x_2-x_1)=-E_xDeltax`.   (1.4.10')

Формуле (1.4.10’) можно придать ещё следующий вид. Пусть ось `X` направлена по полю `(E=E_x>0)` и пусть `d=x_2-x_1`. Введём разность потенциалов (напряжение) по формуле `U=varphi_1-varphi_2`. Тогда согласно (1.4.10’) получаем  `U=Ed`.

Пример 13

Определить разность потенциалов между двумя параллельными друг другу равномерно заряженными плоскостями, одна из которых заряжена положительно с поверхностной плотностью `sigma_1=+sigma`, а вторая отрицательно `sigma_2=-sigma`. Расстояние между плоскостями равно `d`. Определить также:

1) чему будет равен потенциал 2-ой плоскости, если потенциал 1-ой принять равным нулю?

2) Каким будет потенциал 1-ой плоскости, если за нуль потенциала принять потенциал 2-ой плоскости?

Решение

Направим ось `X` от 1-й плоскости ко 2-й перпендикулярно им обоим и совместим начало координат с 1-й плоскостью. Тогда  `U=Ed=sigma/(epsilon_0)d`.

1) Полагая в формуле `varphi(x)=-E_x x+varphi_0`,  (1.4.8') `varphi(0)=0`,  получаем `varphi_0=0` и `varphi(d)=-U`. 

2) В этом случае положим в (1.4.8') `varphi(d)=0`, тогда `varphi_0=U` и `varphi(0)=+U`.

Пример 14

Ускоряющее напряжение в электронно-лучевой трубке кинескопа телевизора `U=30` кВ. До какой скорости разгоняются в ней электроны? Какой процент она составляет от скорости света в вакууме `c=3*10^8` м/с. Начальная скорость электрона равна нулю. Масса электрона  `m=0,91*10^(-30)` кг.

Решение

Воспользуемся законом сохранения энергии:

`Delta(mv^2//2)=|DeltaPi|=eU`,

откуда получаем `v=sqrt((2eU)/m)~~103000` км/с `~~0,34` с (т. е. составляет `34%`  от скорости света).

До сих пор мы рассматривали лишь однородное электростатическое поле. Простейшим примером неоднородного поля является поле точечного заряда. К сожалению, нахождение работы сил даже этого сравнительно простого поля без привлечения высшей математики весьма затруднительно. Поэтому формулу для неё приведём без вывода.

Пусть  имеется неподвижный точечный заряд `q` и пусть другой заряд `q_0` перемещается в поле этого заряда. Пусть он переместился из точки `1`, характеризуемой радиус-вектором `vecr_1`, в точку `2` - с радиус-вектором `vecr_2` по, вообще говоря, криволинейной траектории. Можно показать (вывод можно найти в книге `[3]`), что в этом случае работа сил электростатического поля будет равна

`A_(12)=(q_0q)/(4pi epsilon_0r_1) - (q_0q)/(4pi epsilon_0r_2)`,                  (1.4.11)

где `r_1=|vecr_1|`, `r_2=|vecr_2|`. Далее действуем, как и в случае однородного поля. Если в процессе движения заряда `q_0` никаких других сил, кроме кулоновской силы со стороны заряда `q` не действовало, то по теореме об изменении кинетической энергии имеем: 

 `(mv_2^2)/2-(mv_1^2)/2=(q_0q)/(4pi epsilon_0r_1)-(q_0q)/(4pi epsilon_0r_2)`,
или иначе
 `(mv_2^2)/2+(q_0q)/(4pi epsilon_0r_2)= (mv_1^2)/2+(q_0q)/(4pi epsilon_0r_1)`      (1.4.12)

Определяя потенциальную энергию взаимодействия точечных зарядов  `q` и `q_0` находящихся на расстоянии `r` друг от друга, формулой                                    

                                                         `Pi(r)=(q_0q)/(4pi epsilon_0r)+Pi_0`,                          (1.4.13)

где `Pi_0` - произвольная постоянная, мы можем придать равенству (1.4.12) вид закона сохранения энергии  `K_2+Pi_2=K_1+Pi_1`.

В случае точечных зарядов весьма часто константу `Pi_0` выбирают равной нулю так, чтобы потенциальная энергия взаимодействия двух зарядов стремилась к нулю при разнесении зарядов на бесконечно большое расстояние друг от друга (когда они перестанут «чувствовать» друг друга). В этом случае

                                                       `Pi(r)=(q_0q)/(4pi epsilon_0r)`.                                            (1.4.13')

Пусть в одну и ту же точку поля точечного заряда `q` на расстоянии `r` от него поочерёдно помещаются разные пробные заряды `q_1`, `q_2`, `...`. Энергии этих зарядов будут разными `Pi_1`, `Pi_2`, `...`. Существенно, однако, что отношение этих энергий в величинам пробных зарядов будет одним и тем же

`(Pi_1(r))/(q_1)=(Pi_2(r))/(q_2)=...=q/(4pi epsilon_0r)-=varphi(r)`.                       (1.4.14)

Последним равенством определяется потенциал `varphi(r)` точечного заряда `q` на расстоянии `r` от него. Заметим, что согласно (1.4.11) потенциал `varphi(r)=q/(4pi epsilon_0r)` равен работе сил электростатического поля заряда `q` при перемещении единичного положительного точечного заряда из точки на расстоянии `r` от заряда `q` на бесконечность. Потенциал, как и потенциальная энергия, определён, вообще говоря, неоднозначно - с точностью до произвольной константы

                                                    `varphi(r)=q/(4pi epsilon_0r)+varphi_0`,                              (1.4.14')

которую весьма часто выбирают равной нулю с тем, чтобы при удалении от заряда на бесконечно большое расстояние потенциал заряда в этих (бесконечно удалённых точках) стремился к нулю.

Согласно формуле (1.4.14') потенциал точечного заряда одинаков во всех точках, равноудалённых от него. Это означает, что эквипотенциальными поверхностями в данном случае будут концентрические сферы. Как и в случае однородного поля, в каждой точке поля напряжённость перпендикулярна эквипотенциальной поверхности.

Если электростатическое поле создаётся несколькими зарядами `q_1,q_2,...`, потенциал в произвольной точке поля равен сумме потенциалов, создаваемых каждым из зарядов в той точке:

                                                                    `varphi=varphi_1+varphi_2+...`,                                 (1.4.15)

что, как и в случае напряжённостей полей, называют принципом суперпозиции. Важно, что напряжённости полей надо складывать векторно, а потенциалы - алгебраически (т. е. все же с учётом знаков).

Пример 15

Если воздушный шарик радиусом `R=10` см потереть о шерсть, о мех или о волосы, то он приобретёт довольно большой отрицательный заряд – порядка `q=0,1` мкКл. Каким будет при этом потенциал шарика?


Решение

Поле вне шара совпадает с полем точечного заряда. Потенциал шара будет равен

`varphi=1/(4pi epsilon_0) q/R=9000` В,

т. е. почти `10` киловольт (!). Возникает естественный вопрос: не слишком много вольт мы здесь получили? Нет ли ошибки в нашей оценке? Нет, мы не ошибаемся. Несмотря на столь внушительный потенциал, шар будет обладать весьма незначительной энергией. Оценить энергию воздушного шарика можно по формуле `W=(1//2)qvarphi`, которую мы приведём без вывода, что даёт `W~~10,5*10^(-3)` Дж, поэтому все эти `9` тысяч вольт реальной опасности не представляют.

Пример 16

В случае движения отдельных элементарных частиц (электронов, протонов) удобной единицей измерения энергии является электрон-вольт (эВ). Так называют энергию, которую приобретает частица с зарядом, равным элементарному электрическому заряду, пройдя разность потенциалов в `1` вольт. Энергия электрона в атоме водорода  равна `W=-13,6` эВ. Считая, что электрон в атоме водорода движется по круговой орбите, найти радиус этой орбиты.

Решение

Энергия электрона складывается из кинетической и потенциальной: `W=(mv^2)/2-(e^2)/(4pi epsilon_0r)`. Запишем  ещё  2-й закон  Ньютона  для движения электрона в поле протона: `(mv^2)/r=(e^2)/(4pi epsilon_0r^2)`, откуда получаем `(mv^2)/2=1/2 (e^2)/(4pi epsilon_0r)` и `W=-1/2 (e^2)/(4pi epsilon_0r)`. Решая это уравнение относительно `r`, после подстановки числовых значений находим `r=0,53*10^(-10)` м.

Два основных объекта нашего дальнейшего изучения это – проводники и диэлектрики в  электрическом поле, а также электрические поля в вакууме в их присутствии. Считается, что в проводниках имеется большое число подвижных носителей заряда (способных свободно перемещаться в пределах проводника). В диэлектриках, напротив, считается,  что  таких подвижных зарядов практически нет (их число пренебрежимо мало).