
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Если два неподвижных точечных заряда `q_1` и `q_2` расположены в вакууме на расстоянии `r` друг от друга, то сила, действующая на 2-й заряд со стороны 1-го, равна по модулю силе, действующей со стороны 2-го заряда на 1-й заряд, и противоположно ей направлена; величина силы равна
`|vecF|=1/(4pi epsilon_0)(|q_1||q_2|)/(r^2)`, (1.2.1)
где `1/(4pi epsilon_0)~~9*10^9 ("H"*"м"^2)/("Кл"^2)`, `epsilon_0` – так называемая электрическая постоянная. (Заметьте, что легче запомнить не само её значение `epsilon_0~~0,885*10^(-11) "Ф"/"м"`, а комбинацию `1//4 pi epsilon_0`).
В форме (1.2.1) закон Кулона справедлив для зарядов, взаимодействующих в вакууме. С хорошей точностью он справедлив и для зарядов в воздухе при нормальных условиях: сила взаимодействия зарядов в этом случае будет лишь примерно в `epsilon=1,0006` раз меньше.
Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции: если заряженная частица взаимодействует одновременно с несколькими заряженными частицами, то результирующая сила, действующая на данную частицу, равна векторной сумме сил, действующих на неё со стороны всех других заряженных частиц.
Во сколько раз сила электростатического отталкивания между двумя электронами больше силы их гравитационного притяжения? Масса электрона `m~~0,91*10^(-30)` кг.
Ответ не зависит от расстояния между электронами, т. к. обе силы – и гравитационная `F_"гр"^(ee)=G(m^2)/(r^2)`, и электростатическая `F_"эл"^(ee)=1/(4pi epsilon_0) (e^2)/(r^2)` - одинаковым образом убывают с расстоянием (как `1//r^2`). В итоге
`(F_"эл"^(ee))/(F_"гр"^(ee))=(e^2//4pi epsilon_0r^2)/(Gm^2//r^2)=(e^2)/(4pi epsilon_0Gm^2)=(9*10^9*(1,6*10^(-19))^2)/(6,67*10^(-11)(0,91*10^(-30))^2)~~4,2*10^(42)`.
Аналогичные оценки можно сделать для других пар заряженных элементарных частиц – протона и протона, а также протона и электрона. Эти оценки призваны показать ничтожно малую роль гравитационного взаимодействия между элементарными частицами вещества по сравнению с электростатическим взаимодействием между ними.
Предположим, что модули зарядов протона и электрона отличались бы друг от друга на одну миллионную долю элементарного заряда. Оцените, какая сила отталкивания возникла бы вследствие этого между двумя железными шариками массой в `m=1` г, находящимися на расстоянии `R=1` м друг от друга. Молярную массу железа принять равной `mu=56` г/моль.
В рассматриваемом гипотетическом случае суммарный положительный заряд всех протонов вещества не компенсируется отрицательным зарядом всех электронов. Каждая из масс `m=1` г железа $$ {}_{56}{}^{26}\text{Fe}$$ содержит `nu=m//mu=1//56` моль железа, а значит, в каждом грамме имеется `26*N_A//56` зарядов каждого знака, где `N_A~~6,02*10^(23)` - число Авогадро. Тогда при нарушении равенства `e_+` и `|e_-|` всего на `10^(-6)e` на каждом шарике появился бы избыточный заряд `|q|=10^(-6)e*(26//56)*N_A~~4,5*10^(-2)` Кл. Сила отталкивания между шариками при этом оказалась бы не просто легко наблюдаемой величиной, но очень большой:
`F=1/(4pi epsilon_0) (q^2)/(R^2)=9*10^9*(4,5*10^(-2))^2~~1,8*10^7` H.
Два одинаковых маленьких металлических шарика, имеющих разные заряды одного знака, привели в соприкосновение, а затем разнесли на прежнее расстояние. Увеличится или уменьшится сила взаимодействия шариков?
В этой задаче воспользуемся сразу двумя законами – законом сохранения заряда и законом Кулона. Пусть `q_1` и `q_2` начальные заряды шариков. Для определённости будем считать, что заряды положительные. После приведения шариков в контакт заряды на шариках (в силу их одинаковости) будут равны друг другу и равны `q=(q_1+q_2)//2`. Сила взаимодействия шариков до соприкосновения `f` была пропорциональна произведению зарядов `q_1q_2`; после соприкосновения и разнесения на прежнее расстояние новая сила взаимодействия `F` будет пропорциональна квадрату заряда `q`. Отношение сил
`F/f=([(q_1+q_2)//2]^2)/(q_1q_2)=(q_1^2+2q_1q_2+q_2^2)/(4q_1q_2)`.
Эта величина больше или (в крайнем случае) равна единице в силу следующей цепочки тождественных преобразований:
`(q_1^2+2q_1q_2+q_2^2)/(4q_1q_2)>=1 iff q_1^2+2q_1q_2+q_2^2>=4q_1q_2 iff`
`iff q_1^2-2q_1q_2+q_2^2>=0 iff (q_1-q_2)^2>=0`,
причём равенство имеет место, только если `q_1=q_2`. Итак, сила взаимодействия шаров увеличится.