
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Между положением элемента в периодической системе элементов и распределением электронов в его атоме по энергетическим уровням наблюдается определенная связь.
Проследим, как происходит заполнение электронами электронных оболочек атомов элементов `1–6` периодов Периодической системы химических элементов Д. И. Менделеева.
В первом периоде находятся только те элементы, у которых электронами заполняется `1s`-подуровень: водород `"H"` `(1s^1)` и гелий `"He"` `(1s^2)`. Ёмкость первого энергетического уровня на этом исчерпана, поэтому следующий электрон оказывается на втором энергетическом уровне - в Периодической системе открывается второй период. Он начинается элементами, у которых также заполняется `s`-подуровень: литий `"Li"` `(2s^1)` и бериллий `"Be"` `(2s^2)`.
Элементы, в атомах которых последним заполняется `s`-подуровень внешнего уровня, называют `s`-элементами. К ним относятся `"H"`, `"He"`, и элементы `"IA"` и `"IIA"`-групп: `"Li"`, `"Na"`, `"K"`, `"Rb"`, `"Cs"`, `"Fr"`, `"Be"`, `"Mg"`, `"Ca"`, `"Sr"`, `"Ва"`, `"Ra"`.
Затем происходит заполнение `p`-подуровня.
Элементы, в атомах которых последним заполняется `p`-подуровень внешнего энергетического уровня, называют `p`-элементами. Во втором периоде это `"В"` `(2s^2 2p^1)`, `"C"` `(2s^2 2p^2)`, `"N"` `(2s^2 2p^1)`, `"O"` `2s^2 2p^4)`, `"F"` `(2s^2 2p^5)`, `"Ne"` `(2s^2 2p^6)`.
На втором энергетическом уровне может находиться не больше восьми электронов, поэтому в данном периоде не может быть больше восьми элементов.
Далее следует третий период. Он также начинается с `s`-элементов: `"Na"` `(3s^1)` и `"Mg"` `(3s^2)` и продолжается `p`-элементами от `"Аl"` `(3s^2 3p^1)` до `"Ar"` `(3s^2 3p^6)`. Можно было бы ожидать, что третий период будет продолжаться и далее, ведь на третьем энергетическом уровне может находиться `18` электронов, так как появляется `d`-подуровень, состоящий из пяти орбиталей. Тем не менее период завершается. Почему?
Электронная конфигурация остова элементов четвёртого периода соответствует конфигурации аргона - `3s^2 3p^6`. Как и все благородногазовые конфигурации, она является очень плотным и симметричным электронным слоем, который работает в двух направлениях: экранирует (заслоняет) заряд ядра и отталкивает от себя 19-й электрон атома калия и 20-й электрон атома кальция - для них энергетически выгодным является `4s`-состояние: `"K"["Ar"]4s^1` и `"Ca"["Ar"]4s^2`.
Однако для следующего за кальцием 21-го элемента скандия становится возможным `3d`-состояние. Почему? На `4s`-орбитали больше нет вакантных мест, следовательно, 21-му электрону скандия прихо-дится «выбирать» между `3d`- и `4p`-состоянием.
Для дальнейшего понимания физической сути процесса нужно учитывать тот факт, что заряд ядра каждого последующего элемента также возрастает на единицу, поэтому становится возможным нахождение электронов на орбиталях, близких к `s^2p^6` оболочке, то есть на орбиталях предвнешнего `d`-подуровня. Таким образом, у скандия один электрон «садится» на `3d`-орбиталь, но два других валентных электрона все также находятся на `4s:` `"Sc"["Ar"]3d^1 4s^2`.
Так как всего на `d`-подуровне может разместиться `10` электронов, в Периодической системе появляется декада (десять) `d`-элементов.
Элементы, в атомах которых происходит заполнение `d`-подуровня предвнешнего уровня, называют `d`-элементами. Перечислим `d`-элементы первой декады:
`"Sc"` `(3d^1 4s^2)`, `"Ti"` `(3d^2 4s^2)`, `"V"` `(3d^3 4s^2)`, `"Cr"` `(3d^5 4s^1)`, `"Mn"` `(3d^5 4s^2)`, `"Fe"` `(3d^6 4s^2)`, `"Co"` `(3d^7 4s^2)`, `"Ni"` `(d^4 s^2)`, `"Cu"` `(3d^(10) 4s^1)`, `"Zn"` `(3d^(10) 4s^2)`.
Начиная с галлия происходит заполнение `4p`-подуровня: от `"Ga"` `(4s^2 4p^1)` до завершающего период инертного газа `"Kr"` `(4s^2 4p^6)`.
Аналогично происходит заполнение электронных оболочек в атомах элементов пятого периода.
Некоторые особенности появляются при формировании электрон-ных оболочек в атомах элементов шестого периода. Он, как и все предыдущие, начинается `s`-элементами `("Cs", "Ba")`, далее - лантан `"La"`, в атоме которого начинает заполняться `5d`-подуровень `(5d^1 6s^2)`, но после лантана расположено семейство `f`-элементов. Первая последовательность `f`-элементов - лантаноиды. Они начинаются с `"Ce"``(4f^1 5d^1 6s^2)` и заканчиваются `"Lu"` `(4f^(14) 5d^1 6s^2)`. После лантаноидов вновь продолжает заполняться `5d`-подуровень (от `"Hf"` до `"Hg"`). После этого строится `6p`-подуровень (от `"Т"1` до `"Rn"`).
Итак, в появлении подуровней и их заселении электронами можно выявить следующие закономерности:
во втором периоде `p`-подуровень и появляется, и заполняется. В третьем периоде `d`-подуровень появляется, а заполняется с отставанием на один - в четвёртом. В четвёртом периоде появляется `f`-подуровень, заполняется же он с отставанием уже на два - в шестом.
Наиболее стабильными состояниями подуровня являются состояния, когда он полностью заполнен электронами, когда заполнен наполовину, либо когда совсем пуст. То есть для `p`-подуровня стабильными являются `p^0`, `p^3` и `p^6` состояния, для `d`-подуровня - `d^0`, `d^5` и `d^(10)`, для `f`-подуровня - `f^0`, `f^7` и `f^(14)`.
Поэтому в атомах элементов `"Cr"` `(3d^5 4s^1)`, `"Mo"` `(4d^5 5s^1)`, `"Cu"` `(3d^(10) 4s^1)`, `"Ag"` `(4d^(10)5s^1)`, `"Au"` `(5d^(10) 6s^1)` наблюдается «провал» электрона: элекрон с внешнего `s`-подуровня переходит на `d`-предвнешний подуровень, для того чтобы он оказался или наполовину завершённым `("Cr"` и `"Mo")`, или полностью завершённым `("Cu", "Ag", "Au")`. Явление «провала» электрона присуще также и некоторым другим `d`-элементам.
Рассмотрим электронную конфигурацию `p`-элемента на примере атома брома:
`"Br"` – элемент № 35, четвёртый период, `"VIIA"`-группа.
Так как бром находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для брома `+35`. Он должен быть компенсирован 35-ю электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома брома `1s^2 2s^2 2p^6 3s^2 3s^2 3p^6 3d^(10) 4s^2 4p^5` или `["Ar"]` `4s^2 4p^5`. Его валентный уровень состоит из двух подуровней: внешних `4s` и `4p`. Семь электронов, размещённых на этих подуровнях, являются валентными, то есть принимают участие в образовании связей атома брома с другими атомами.
Изобразим орбитальную диаграмму валентного уровня брома:
Орбитали внешнего `4d`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у брома есть возможность распарить свои `4p`-электроны.
Рассмотрим электронную конфигурацию `d`-элемента на примере атома титана:
`"Ti"` - элемент № 22, четвёртый период, `"IVB"`-группа.
Так как титан находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для титана `+22`. Он должен быть компенсирован 22-мя электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома титана `1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2` или `["Ar"]` `3d^2 4s^2`. Его валентный уровень состоит из двух подуровней: предвнешнего `3d` и внешнего `4s`. Четыре электрона, размещённых на этих подуровнях, являются валентными, то есть принимают участие в образовании связей атома титана с другими атомами.
Изобразим орбитальную диаграмму валентного уровня титана:
Орбитали внешнего `4p`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у титана есть возможность распарить свои `4s`-электроны.
Рассмотрим электронную конфигурацию следующих частиц: `"Br"^(1-)`, `"Br"^(3+)`, `"Ti"^(2+)`, `"Ti"^(4+)`.
Как уже говорилось, электронная конфигурация атома брома такова:
`1s^2 2s^2 2p^6 3s^2 3p^6 3d^(10) 4s^2 4p^5` или `["Ar"]` `4s^2 4p^5`.
Однако в химических реакциях бром, как любой неметалл, может принимать электроны, проявляя окислительные свойства, и понижать свою степень окисления:
$$ \stackrel{0}{\mathrm{Br}}+{\mathrm{e}}^{-}=\stackrel{-1}{\mathrm{Br}}$$
Тогда, `["Ar"]4s^2 4p^5 +e^- =["ar"]4s^2 4p^6` или `["Kr"]`.
Может ли атом брома в химической реакции присоединить более одного электрона? Нет, так как вакансий на валентном уровне больше нет.
Если атом брома проявляет восстановительные свойства и отдаёт электроны, его степень окисления повышается. Например, рассмотрим электронную конфигурацию брома в степени окисления `+3`:
$$ \stackrel{0}{\mathrm{Br}}-3{\mathrm{e}}^{-}=\stackrel{+3}{\mathrm{Br}}$$
`["Ar"]4s^2 4p^5 -3e^- =["Ar"]4s^2 4p^2`.
Сколько всего электронов может отдать атом брома в химической реакции и какую максимальную степень окисления он может проявить? Так как на валентном уровне брома располагаются `7` электронов - `4s^2 4p^5` - он может отдать все семь электронов и проявить высшую степень окисления `+7`, равную номеру группы. Кроме неё из положительных степеней окисления он проявляет `+1`, `+3`, `+5`, но только в окружении атомов более электроотрицательных элементов - кислорода и фтора. Например, в составе гипобромит-, бромит-, бромат- и пербромат-анионов: `"BrO"^-`, `"BrO"_2^-`, `"BrO"_3^-` и `"BrO"_4^-`.
При образовании катионов важно помнить, что электроны уходят с самого дальнего (внешнего) от ядра подуровня.
Атомы металла титана, как атомы любого металла, не обладают окислительной активностью. Металлы никогда не проявляют отрицательных степеней окисления (в соединениях с неметаллами). А вот работать восстановителями, то есть повышать свою степень окисления, отдавая в реакциях электроны, они могут. Рассмотрим образование катионов титана $$ \stackrel{+2}{\mathrm{Ti}}$$ и $$ \stackrel{+4}{\mathrm{Ti}}$$.
Электронная конфигурация атома титана такова: `1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2` или `["Ar"]` `3d^2 4s^2`. При образовании катиона $$ \stackrel{+2}{\mathrm{Ti}}$$ валентные электроны уходят с самого дальнего от ядра подуровня - с `4s^2`:
`["Ar"]3d^2 4s^2 -2e^- =["Ar"]3d^2 4s^0`,
а при образовании с валентного уровня, состоящего из предвнешнего `3d`- и внешнего `4s`-подуровней, уходят все электроны:
`["Ar"]3d^2 4s^2-4e^- =["Ar"]3d^0 4s^0` или просто `["Ar"]`.
Иногда у учащихся возникает недопонимание: если при заселении электронной оболочки электроны в первую очередь «садятся» на `4s`, а потом на `3d`, то при отдаче электронов порядок должен сохраниться прежний: сначала электроны уйдут с `3d`, и только потом с `4s`. Однако правило почему-то этот порядок игнорирует. На самом деле логика заключается в следующем: физически подуровни располагаются вокруг ядра в соответствии с возрастанием главного и орбитального квантовых чисел:
$$ 1s<2s<2p<3s<\mathbf{3}\mathit{p}< \mathbf{3}\mathit{d}<\mathbf{4}\mathit{s}<\mathbf{4}\mathit{p}<5s...$$,
но из-за межэлектронного отталкивания в нейтральном атоме (при равенстве числа протонов и электронов) порядок заполнения подуровней меняется: как уже говорилось, состояние `4s`, например, становится выгоднее `3d`, и энергетическая последовательность заполнения становится такой:
$$ 1s<2s < 2p<3s<\mathbf{3}\mathit{p}<\mathbf{4}\mathit{s}<\mathbf{3}\mathit{d}<\mathbf{4}\mathit{p}<5s...$$
Но при этом `4s` подуровень остается внешним, то есть наиболее отдаленным от ядра, по сравнению с `3d`! Поэтому при образовании катионов `d`-элементов электроны уходят именно с него.
Из рассмотрения электронной структуры невозбуждённых атомов в зависимости от порядкового номера элемента следует: