
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ainR`. Точка `a` называется точкой локального максимума функции `f`, если существует `epsilon` - окрестность точки `a` что для любого `x!=a` из этой окрестности `f(x)<f(a)`.
Если выполнено неравенство `f(x)>f(a)`, то `a` называется точкой локального минимума функции `f`.
Точки локального максимума и локального минимума называют точками локального экстремума.
Если точка `a` является точкой локального экстремума функции `y=f(x)` и функция `f` имеет производную в этой точке, то `f^'(a)=0`.
Физический смысл: при одномерном движении с возвращением в точке максимального удаления должна быть остановка. Геометрический смысл: касательная в точке локального экстремума горизонтальна.
Из теоремы Ферма следует, что если функция имеет экстремум в точке `a`, то в этой точке производная функции либо равна нулю, либо не существует. Например, функция `y=|x|` имеет минимум в точке `x=0`, а производная в этой точке не существует (см. пример 4.2). Точки, в которых функция определена, а производная равна нулю или не существует, будем называть критическими.
Итак, если у функции имеются точки экстремума, то они лежат среди критических точек (критические точки «подозрительны» на экстремум). Для формулировки условий, обеспечивающих наличие экстремума в критической точке, нам потребуется следующее понятие.
Напомним, что под промежутком понимается интервал (конечный или бесконечный), полуинтервал или отрезок числовой прямой.
Пусть функция `y=f(x)` определена на промежутке `I`.
1) Функция `y=f(x)` возрастает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)<f(y)`.
2) Функция `y=f(x)` убывает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)>f(y)`.
Если функция возрастает или убывает на `I`, то говорят, что функция монотонна на промежутке `I`.
Условия монотонности. Пусть функция `y=f(x)` определена на промежутке `I` с концами `a`, `b`, дифференцируема на `(a, b)` и непрерывна в концах, если они принадлежат `I`. Тогда
1) если `f^'(x)>0` на `(a, b)`, то функция возрастает на `I`;
2) если `f^'(x)<0` на `(a, b)`, то функция убывает на `I`.
Условия экстремума. Пусть функция `y=f(x)` определена на интервале `(ab)`, непрерывна в точке `x_0 in(a, b)` и дифференцируема на `(a,x_0) uu (x_0,b)`. Тогда
1) если `f^'(x)>0` на `(a;x_0)` и `f^'(x)<0` на `(x_0;b)`, то `x_0` - точка локального максимума функции `f`;
2) если `f^'(x)<0` на `(a;x_0)` и `f^'(x)>0` на `(x_0;b)`, то `x_0` - точка локального минимума функции `f`.
Исследовать функцию `y=x^3-3x` на монотонность и экстремумы на области определения.
Данная функция определена на `R` и дифференцируема в каждой точке (см. следствие теоремы 4.2), причём `y^'=3(x^2-1)`. Так как `y^'<0` при `x in(-1,1)`; `y^'>0` при `x in(-oo,-1)uu(1,+oo)`, то функция возрастает на лучах `(-oo,-1]` и `[1,+oo)` (на каждом из двух лучей в отдельности, но не на их объединении!), убывает на отрезке `[-1,1]`. По условию экстремума `x=-1` - точка локального максимума, а `x=1` - точка локального минимума. Так как `y^'=0` только в точках `x=1` и `x=-1`, то по теореме Ферма других точек экстремума у функции нет.
Рассмотрим важный класс задач, в которых используется понятие производной – задачи нахождения наибольшего и наименьшего значения функции на отрезке.
Найти наибольшее и наименьшее значение функции `y=x^3-3x` на отрезке: а) `[-2;0]`; б) `[1;3]`.
а) Из примера 5.1 следует, что функция возрастает на `(-oo,-1]` и убывает на `[-1,1]`. Так что `y(-1)>=y(x)` при всех `x in[-2;0]` и `y_"наиб"=y(-1)=2` - наибольшее значение функции на отрезке `[-2;0]`. Чтобы найти наименьшее значение, нужно сравнить значения функции на концах отрезка. Поскольку `y(-2)=-2`, а `y(0)=0`, то `y_"наим"=-2` - наименьшее значение функции на отрезке `[-2;0]`.
б) Так как на луче `[1,+oo)` функция возрастает, то `y(1)<=y(x)<=y(3)` для всех `x in[1;3]`, поэтому `y_"наим"=y(1)=-2`, `y_"наиб"=y(3)=18`.
Отметим, что непрерывная на отрезке функция всегда имеет наибольшее и наименьшее значение.
Найти наибольшее и наименьшее значение функции `y=x^3-12|x+1|` на отрезке `[-4;3]`.
Отметим, что функция непрерывна на всей числовой прямой. Обозначим `f_1(x)=x^3+12(x+1)`, `f_2(x)=x^3-12(x+1)`. Тогда `y=f_1(x)` при `-4<=x<=-1` и `y=f_2(x)` при `-1<=x<=3`. Находим `f_1^'(x)=3x^2+12`, `f_2^'(x)=3x^2-12`. Уравнение `f_1^'(x)=0` не имеет действительных корней, а уравнение `f_2^'(x)=0` имеет два действительных корня `x_1=-2`, `x_2=2`, из которых интервалу `(-1;3)` принадлежит только точка `x_2`. В точке `x=-1` функция определена, но не имеет производной (можно, например, провести рассуждения, аналогичные рассуждениям примера 4.2). Итак, имеется две критические точки: `x=-1` и `x=2`. Производная `y^'(x)=f_1^'(x)>0` на `(-4;-1)`, `y^'(x)=f_2^'(x)<0` на `(-1;2)` и `y^'(x)=f_2^'(x)>0` на `(2;3)`. Запишем все исследования в таблице:
`x` | `x=-4` | `(-4;-1)` | `x=-1` | `(-1;2)` | `x=2` | `(2;3)` | `x=3` |
`y^'` |
|
`+` |
не сущ. |
`-` |
`0` |
`+` |
|
`y` | `-100` |
возр. |
`-1` макс. |
убыв. |
`-28` мин. |
возр. |
`-21` |
`y_"наиб"=-1`; `y_"наим"=-100`.