§5. Экстремум функции. Монотонные функции. Наибольшее и наименьшее значение функции на отрезке

Определение

Пусть функция `y=f(x)` определена на некотором интервале, содержащем точку `ainR`. Точка `a` называется точкой локального максимума функции `f`, если существует `epsilon` - окрестность точки `a` что для любого `x!=a` из этой окрестности `f(x)<f(a)`.

Если выполнено неравенство  `f(x)>f(a)`, то `a` называется точкой локального минимума функции `f`.

Точки локального максимума и локального минимума называют точками локального экстремума.

Теорема 5.1 (Ферма)

Если точка `a` является точкой локального экстремума функции `y=f(x)` и функция `f` имеет производную в этой точке, то `f^'(a)=0`.

Физический смысл: при одномерном движении с возвращением в точке максимального удаления должна быть остановка. Геометрический смысл: касательная в точке локального экстремума горизонтальна.

Замечание.

Из теоремы Ферма следует, что если функция имеет экстремум в точке `a`, то в этой точке производная функции либо равна нулю, либо не существует. Например, функция `y=|x|` имеет минимум в точке `x=0`, а производная в этой точке не существует (см. пример 4.2). Точки, в которых функция определена, а производная равна нулю или не существует, будем называть критическими.

Итак, если у функции имеются точки экстремума, то они лежат среди критических точек (критические точки «подозрительны» на экстремум). Для формулировки условий, обеспечивающих наличие экстремума в критической точке, нам потребуется следующее понятие.

Напомним, что под промежутком понимается интервал (конечный или бесконечный), полуинтервал или отрезок числовой прямой.

Определение

Пусть функция `y=f(x)` определена на промежутке `I`.

1) Функция `y=f(x)` возрастает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)<f(y)`.

2) Функция `y=f(x)` убывает на `I`, если для любых `x,yinI`, `x<y`, выполняется `f(x)>f(y)`.

Если функция возрастает или убывает на `I`, то говорят, что функция монотонна на промежутке `I`.

Условия монотонности. Пусть функция `y=f(x)` определена на промежутке `I` с концами `a`, `b`, дифференцируема на `(a, b)` и непрерывна в концах, если они принадлежат `I`. Тогда

1) если `f^'(x)>0` на `(a, b)`, то функция возрастает на `I`;

2) если `f^'(x)<0` на `(a, b)`, то функция убывает на `I`.

Условия экстремума. Пусть функция `y=f(x)` определена на интервале `(ab)`, непрерывна в точке `x_0 in(a, b)` и дифференцируема на `(a,x_0) uu (x_0,b)`. Тогда

1) если `f^'(x)>0` на `(a;x_0)` и `f^'(x)<0` на `(x_0;b)`, то `x_0` - точка локального максимума функции `f`;

2) если `f^'(x)<0` на `(a;x_0)` и `f^'(x)>0` на `(x_0;b)`, то `x_0` - точка локального минимума функции `f`.


Пример 5.1

Исследовать функцию `y=x^3-3x` на монотонность и экстремумы на области определения.

Решение

Данная функция определена на `R` и дифференцируема в каждой точке (см. следствие теоремы 4.2), причём `y^'=3(x^2-1)`. Так как `y^'<0` при `x in(-1,1)`; `y^'>0` при `x in(-oo,-1)uu(1,+oo)`, то функция возрастает на лучах `(-oo,-1]` и `[1,+oo)` (на каждом из двух лучей в отдельности, но не на их объединении!), убывает на отрезке `[-1,1]`. По условию экстремума `x=-1` - точка локального максимума, а `x=1` - точка локального минимума. Так как `y^'=0` только в точках `x=1` и `x=-1`, то по теореме Ферма других точек экстремума у функции нет.

Рассмотрим важный класс задач, в которых используется понятие производной – задачи нахождения наибольшего и наименьшего значения функции на отрезке.

Пример 5.2

Найти наибольшее и наименьшее значение функции `y=x^3-3x` на отрезке: а) `[-2;0]`; б) `[1;3]`.

Решение

а) Из примера 5.1 следует, что функция возрастает на `(-oo,-1]` и убывает на `[-1,1]`. Так что `y(-1)>=y(x)` при всех `x in[-2;0]` и `y_"наиб"=y(-1)=2` - наибольшее значение функции на отрезке `[-2;0]`. Чтобы найти наименьшее значение, нужно сравнить значения функции на концах отрезка. Поскольку `y(-2)=-2`, а `y(0)=0`, то `y_"наим"=-2` - наименьшее значение функции на отрезке `[-2;0]`.

б) Так как на луче  `[1,+oo)` функция возрастает, то `y(1)<=y(x)<=y(3)` для всех `x in[1;3]`, поэтому `y_"наим"=y(1)=-2`, `y_"наиб"=y(3)=18`. 

Замечание

Отметим, что непрерывная на отрезке функция всегда имеет наибольшее и наименьшее значение.

Пример 5.3

Найти наибольшее и наименьшее значение функции `y=x^3-12|x+1|` на отрезке `[-4;3]`.

Решение

Отметим, что функция  непрерывна на всей числовой прямой. Обозначим  `f_1(x)=x^3+12(x+1)`, `f_2(x)=x^3-12(x+1)`. Тогда `y=f_1(x)` при `-4<=x<=-1` и `y=f_2(x)` при `-1<=x<=3`. Находим `f_1^'(x)=3x^2+12`, `f_2^'(x)=3x^2-12`. Уравнение `f_1^'(x)=0` не имеет действительных корней, а уравнение `f_2^'(x)=0` имеет два действительных корня  `x_1=-2`, `x_2=2`, из которых интервалу `(-1;3)` принадлежит только точка `x_2`. В точке `x=-1` функция  определена, но не имеет производной (можно, например, провести рассуждения, аналогичные рассуждениям примера 4.2). Итак, имеется две критические точки: `x=-1` и `x=2`. Производная `y^'(x)=f_1^'(x)>0` на `(-4;-1)`, `y^'(x)=f_2^'(x)<0`  на `(-1;2)` и `y^'(x)=f_2^'(x)>0` на `(2;3)`. Запишем все исследования в таблице:

`x` `x=-4` `(-4;-1)` `x=-1` `(-1;2)` `x=2` `(2;3)` `x=3`
`y^'`

 

`+`

не сущ.

`-`

`0`

`+`

 

`y` `-100`

возр.

`-1` макс.

убыв.

`-28` мин.

возр.

`-21`


Ответ

`y_"наиб"=-1`;  `y_"наим"=-100`.