
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Пусть функция `y=f(x)` определена на некотором интервале `(c;d)`, содержащем точку `ainR`. Функция `y=f(x)` называется дифференцируемой в точке , если существует конечный
`lim_(x->a)(f(x)-f(a))/(x-a)`.
Этот предел называется производной функции `y=f(x)` в точке `a` и обозначается `f^'(a)`.
Для точек `x,ain(c;d)` введём обозначения: `Deltax=x-a` – приращение аргумента; `Deltaf=f(x)-f(a)` – приращение функции. Тогда дифференцируемость `y=f(x)` в точке `a` означает, что
`f^'(a)=lim_(x->a)(Deltaf)/(Deltax)`.
Функция называется дифференцируемой на множестве, если она дифференцируема в каждой точке этого множества.
Найти по определению производные функций:
а) `f(x)=c, cinR`, в произвольной точке;
б) `f(x)=x^n,ninN`, в произвольной точке;
в) `f(x)=sqrtx` в точке `a>0`.
а) Пусть `ainR`. Поскольку приращение постоянной функции `Deltaf=c-c=0`, то производная `f^'(a)=lim_(x->a)0/(x-a)=0`.
б) Приращение данной функции в точке `ainR` можно записать следующим образом: `Deltaf=x^n-a^n=(x-a)(x^(n-1)+ax^(n-2)+...+a^(n-1))`. Тогда
`f^'(a)=lim_(x->a)(x^n-a^n)/(x-a)=lim_(x->a)(x^(n-1)+ax^(n-2)+...+a^(n-1))=na^(n-1)`.
Итак, `(x^n)^'=nx^(n-1)` для всех `xinR`.
в) Пусть `a>0`. Функция `s(x)=sqrtx` определена на некотором интервале, содержащем `a` (например, `(a//2,2a)`). Запишем отношение приращений
`(Deltaf)/(Deltax)=(sqrtx-sqrta)/(x-a)=(sqrtx-sqrta)/((sqrtx-sqrta)(sqrtx+sqrta))=1/(sqrtx+sqrta)`.
Тогда `f^'(a)=lim_(x->a)1/(sqrtx+sqrta)=1/(2sqrta)`, т. е. `(sqrtx)=1/(2sqrtx)` при `x>0`.
Укажем физический смысл производной. Пусть `s=s(t)` - расстояние, пройденное телом за время `t` (движение одномерное). Тогда частное `(s(t)-s(t_0))/(t-t_0)` выражает среднюю скорость за время от `t_0` до `t`. Если мы хотим узнать скорость тела в момент времени `t_0`, то нужно неограниченно уменьшать промежуток от `t_0` до `t`, т. е. устремлять `t` к `t_0`. Таким образом, `s^'(t_0)=lim_(t->t_0)(s(t)-s(t_0))/(t-t_0)` есть мгновенная скорость в `t_0`. Так что интуитивное представление о производной есть у каждого, кто видел спидометр автомобиля.
Если функция `y=f(x)` дифференцируема в точке `a`, то она непрерывна в точке `a`.
Следующий пример показывает, что обратное утверждение к теореме 4.1 неверно.
Доказать, что функция `y=|x|` не дифференцируема (не имеет производной) в точке `x=0`.
Рассмотрим две последовательности `(x_n)` и `(bar(x)_n)` такие что `x_n->0`, `bar(x)_n->0` при `n->oo`, все `x_n>0`, а все `barx_n<0`. Тогда соответствующие отношения приращений функции к приращениям аргумента в точке `x=0` имеют вид `((Deltay)/(Deltax))_n=(|x_n|-0)/(x_n-0)=(x_n)/(x_n)=1` и `((Deltay)/(Deltax))_n=(|barx_n|-0)/(barx_n-0)=(-barx_n)/(barx_n)=-1` что означает отсутствие предела `lim_(x->0)(Deltay)/(Deltax)`, т. е. отсутствие `y^'(0)`.
Пусть функции `y=f(x)`, `y=g(x)` дифференцируемы в точке `a`, тогда в этой точке дифференцируемы функции `y=(f+g)(x)`, `y=c*f(x)` (где `cinR`), `y=(f*g)(x)` и, если `g(a)!=0`, то также `y=(f/g)(x)`,причём
1) `(f+-g)^'(a)=f^'(a)+-g^'(a)` и `(c*f)^'(a)=c*f^'(a)`;
2) `(f*g)^'(a)=f^'(a)g(a)+f(a)g^'(a)`;
3) `(f/g)^'(a)=(f^'(a)g(a)-f(a)g^'(a))/(g^2(a))`.
Из теоремы 4.2 и пунктов а) и б) примера 4.1 вытекает
Любой многочлен `P(x)=a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0` является дифференцируемой на `R` функцией с производной `P^'(x)=a_n nx^(n-1)+a_(n-1)(n-1)x^(n-2)+...+a_1`.
Найти производную функции `y=(x+1)/(3x-6)` при `x!=2`.
На основании примера 4.1 и теоремы 4.2 получаем:
`y^'((x+1)^'(3x-6)-(x+1)(3x-6)^')/((3x-6)^2)=`
`=(3x-6-(x+1)*3)/(9(x-2)^2)=(-1)/((x-2)^2)`.
Вообще говоря, любая дробно-рациональная функция дифференцируема во всех точках, за исключением нулей знаменателя.
Пусть на множестве `X` задана функция `y=f(x)` и на множестве её значений задана функция `z=g(y)`. Тогда говорят, что на множестве `X` определена сложная функция (или композиция) `z=g(f(x))` функций `z=g(y)` и `y=f(x)`. Например, рассмотрим на луче `X=(-oo;-1]` функцию `y=x^2-1`. На множестве её значений `[0;+oo)` определена функция `z=g(y)=sqrty`. Тогда на `X` можно определить сложную функцию `z=g(f(x))=sqrt(x^2-1)`.
Пусть на множестве `X` определена сложная функция `z=g(f(x))`. Если функция `y=f(x)` дифференцируема в точке `x_0`, а функция `z=g(y)` дифференцируема в точке `y_0=f(x_0)`, то сложная функция `z=g(f(x))` дифференцируема в точке `x_0` и `(g(f(x_0)))^'=g(y_0)f^'(x_0)`.
Найти производную функции `z(x)=sqrt(x^2-1)` в точке `x in(-oo;-1)`.
Данная функция является композицией двух функций `g(y)=sqrty` и `y=f(x)=x^2-1`. Поскольку `g^'(y)=1/(2sqrty)` (см. пример 4.1), а `y^'=f^'(x)=2x`, то по теореме 4.3 получаем
`z^'(x)=g^'(f(x))*f^'(x)=(1)/(2sqrt(f(x)))*f^'(x)=`
`=(2x)/(2sqrt(x^2-1))=x/(sqrt(x^2-1))`.
Пусть функция `y=f(x)` дифференцируема в точке `a`. Касательной к графику `f` в точке `A(a;f(a))` называется прямая, проходящая через точку `A`, угловой коэффициент которой равен `f^'(a)`. Уравнение касательной в точке `A` имеет вид
`y=f(a)+f^'(a)(x-a)`.
Функция `f(x)=sqrt(1-x^2)` дифференцируема в каждой точке интервала `(-1;1)` с `f^'(x)=-x/(sqrt(1-x^2))`. Следовательно, уравнение касательной к графику этой функции в `A(a;f(a))` имеет вид `y=sqrt(1-a^2)-(a(x-a))/(sqrt(1-a^2))`, т. е. `y=(1-ax)/(sqrt(1-a^2)`. График `f` представляет собой полуокружность, а касательная к этой кривой была определена в геометрии. Докажем, что оба определения дают одну и ту же прямую.
Рассмотрим случай `ain(0;1)`. Касательная, определенная при помощи производной, проходит через точку `A(a;f(a))` и угловой коэффициент её равен `f^'(a)=-a/(sqrt(1-a^2))`. Так как этот угловой коэффициент отрицателен, то угол `varphi`, образованный касательной с положительным направлением оси `Ox`, тупой: `"tg"varphi=f^'(a)`. Тогда тангенс острого угла `alpha` (см. рис. 3), образованного касательной с отрицательным направлением оси `Ox`, равен `a/(sqrt(1-a^2))`. Котангенс же острого угла `beta`, образованного прямой `OA` с положительным направлением оси `Ox`, равен `a/(f(a))=a/(sqrt(1-a^2))`. Итак, `"tg"alpha="ctg"beta`, оба угла `alpha` и `beta` острые, поэтому `beta=90^@-alpha`. А это значит, что касательная, определенная при помощи производной, перпендикулярна радиусу окружности, проведенному в точку `A`, т. е. совпадает с касательной в смысле геометрического определения. Случай `ain(-1;0)` рассматривается аналогично. Этот случай (а также случай `a=0`) рекомендуем рассмотреть самостоятельно.
Часто требуется провести касательную к графику функции через произвольную точку плоскости. Такая задача может иметь два и более решений, а может и вообще не иметь решений.
Провести касательную к параболе `y=1+2x-x^2` через произвольную точку плоскости `(x_0;y_0)`. Исследовать решение.
Так как `(1+2x-x^2)^'=2-2x`, то уравнение касательной к параболе в точке `(a;1+2a-a^2)` имеет вид:
`y=(1+2a-a^2)+(2-2a)(x-a)`.
Эта касательная должна проходить через точку `(x_0;y_0)`, откуда `y_0=(1+2a-a^2)+(2-2a)(x_0-a)` и после преобразований получаем уравнение для нахождения абсциссы точки касания `a`:
`a^2-2x_0a+(1+2x_0-y_0)=0`. (*)
Если `D/4=x_0^2-2x_0-1+y_0<0`, т. е. `y_0<1+2x_0-x_0^2`, то уравнение (*) не имеет решений.
Если `D/4>0`, т. е. `y_0>1+2x_0-x_0^2`, то уравнение (*) имеет два решения `a=x_0+-sqrt(x_0^2-2x_0-1+y_0)`. Подставляя найденные `a` получим уравнения двух касательных, проходящих через точку `(x_0;y_0)`. Например, при `x_0=0`, `y_0=2` имеем `a+-1` и соответственно уравнения двух касательных: `y=2` (горизонтальная касательная, касающаяся параболы в её вершине `(1;2)`) и `y=4x+2` (наклонная касательная, касающаяся параболы в точке `(-1;-2)`, см. рис. 4). Наконец, если `D/4=0` т. е. `y_0=1+2x_0-x_0^2`, то уравнение имеет одно решение `a=x_0`. Геометрический смысл решения очень прост.
Если `y_0<1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит «ниже» параболы, то через эту точку касательную провести нельзя.
Если `y_0>1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит «выше» параболы, то через эту точку можно провести две касательные к параболе. Наконец, если `y_0=1+2x_0-x_0^2`, т. е. точка `(x_0;y_0)` лежит на параболе, то через нее можно провести единственную касательную, касающуюся параболы в точке `(x_0;y_0)`.