
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Пусть есть тело, называемое рабочим телом, которое может совершать цикл (не обязательно равновесный), периодически вступая в тепловой контакт с двумя телами. Тело с более высокой температурой назовём условно нагревателем, а с более низкой температурой – холодильником. За цикл рабочее тело совершает положительную или отрицательную работу $$ A$$. Такое устройство будем называть тепловой машиной. Тепловая машина, которая служит для получения механической работы, называется тепловым двигателем. Тепловая машина, служащая для передачи количества теплоты от менее нагретого тела (холодильника) к более нагретому (нагревателю), используя работу окружающих тел над рабочим телом, называется тепловым насосом или холодильной установкой (холодильником). Деление на тепловые насосы и холодильные установки условное, связанное с предназначением этих тепловых машин. Тепловой насос используется для поддержания в помещении температуры, которая выше температуры окружающей среды. Холодильная установка используется для поддержания в некотором объёме (камере) температуры более низкой, чем снаружи.
В тепловом двигателе рабочее тело совершает прямой цикл, а в тепловом насосе и холодильной установке – обратный.
В тепловом двигателе рабочее тело получает за цикл от нагревателя количество теплоты $$ {Q}^{+}$$ (рис. 8) и отдаёт холодильнику положительное количество теплоты $$ {Q}^{-}$$ (получает от холодильника отрицательное количество теплоты «$$ -{Q}^{-}$$»). При этом за цикл рабочее тело совершает работу $$ A$$. Коэффициентом полезного действия (КПД) теплового двигателя называется КПД соответствующего прямого цикла, т. е. отношение совершаемой за цикл работы $$ A$$ к полученному за цикл от нагревателя количеству теплоты $$ {Q}^{+}:$$
$$ \eta ={\displaystyle \frac{A}{{Q}^{+}}}$$.
По первому закону термодинамики, применённому к рабочему телу теплового двигателя за цикл, $$ {Q}^{+}+(-{Q}^{-})=A.$$ Поэтому
$$ \eta ={\displaystyle \frac{{Q}^{+}-{Q}^{-}}{{Q}^{+}}}=1-{\displaystyle \frac{{Q}^{-}}{{Q}^{+}}}$$.
Видим, что КПД теплового двигателя меньше единицы. Причиной этого является то, что для обеспечения периодичности в работе теплового двигателя необходимо часть тепла, взятого у нагревателя, обязательно отдать холодильнику.
С. Карно (1796 – 1832) установил, что максимальный КПД теплового двигателя, работающего с нагревателем температуры $$ {T}_{1}$$ и холодильником температуры $$ {T}_{2}$$, независимо от рабочего тела есть
$$ \eta =1-{\displaystyle \frac{{T}_{2}}{{T}_{1}}}$$. (21)
Это достигается, если рабочее тело совершает цикл Карно, т. е. равновесный цикл, состоящий из двух адиабат и двух изотерм с температурами $$ {T}_{1}$$ и $$ {T}_{2}$$. На изотерме с $$ {T}_{1}$$ рабочее тело получает тепло от нагревателя, а на изотерме с $$ {T}_{2}$$ – отдаёт тепло холодильнику. Цикл Карно для идеального газа изображён на рис. 9: `1-2` и `3-4` – изотермы, `2-3` и `4-1` – адиабаты. Тепловая машина, работающая по прямому или обратному циклу Карно, называется идеальной тепловой машиной.
Газ, совершающий цикл Карно, отдаёт холодильнику `70%` теплоты, полученной от нагревателя. Температура нагревателя $$ {T}_{1}=400 \mathrm{К}$$. Найти температуру холодильника.
Пусть газ получает за цикл от нагревателя количество теплоты $$ {Q}_{1}$$. Тогда холодильник получает от газа количество теплоты $$ \mathrm{0,7}{Q}_{1}$$. Применив первый закон термодинамики для всего цикла, получим, что $$ {Q}_{1}+(-\mathrm{0,7}{Q}_{1})=A$$. Отсюда работа за цикл $$ A=\mathrm{0,3}{Q}_{1}$$ . КПД цикла $$ \eta ={\displaystyle \frac{A}{{Q}_{1}}}=\mathrm{0,3}$$. Поскольку для цикла Карно $$ \eta =1-{\displaystyle \frac{{T}_{2}}{{T}_{1}}}$$, то температура холодильника
$$ {T}_{2}={T}_{1}(1-\eta )=\mathrm{0,7}{T}_{1}=280 \mathrm{К}$$.
КПД тепловой машины, работающей по циклу (рис. 10), состоящему из изотермы `1 – 2`, изохоры `2 – 3` и адиабатического процесса `3 – 1`, равен $$ \eta $$, а разность максимальной и минимальной температур газа в цикле равна $$ ∆T$$. Найти работу, совершённую $$ \nu $$ молями одноатомного идеального газа в изотермическом процессе.
При решении задач, в которых фигурирует КПД цикла, полезно предварительно проанализировать все участки цикла, используя первый закон термодинамики, и выявить участки, где рабочее тело получает и где отдаёт тепло.
Проведём мысленно ряд изотерм на диаграмме `p-V`. Тогда станет ясно, что максимальная температура в цикле будет на изотерме `1 – 2`, а минимальная в точке `3`. Обозначим их через $$ {T}_{1}$$ и $$ {T}_{3}$$ соответственно.
Для участка `1 – 2` изменение внутренней энергии $$ {U}_{2}-{U}_{1}=0$$. По первому закону термодинамики $$ {Q}_{12}=({U}_{2}-{U}_{1})+{A}_{12}$$. Так как на участке `1 – 2` газ расширялся, то работа газа $$ {A}_{12}>0$$. Значит, и подведённое к газу тепло на этом участке $$ {Q}_{12}>0$$ , причём $$ {Q}_{12}={A}_{12}$$ .
На участке `2 – 3` работа газа равна нулю. Поэтому $$ {Q}_{23}={U}_{3}-{U}_{2}$$. Воспользовавшись записанными выше выражениями для $$ {U}_{3}$$ и $$ {U}_{2}$$ и тем, что $$ {T}_{1}-{T}_{3}=∆T$$, получим . Это означает, что на участке `2 – 3` газ получает отрицательное количество теплоты, т. е. фактически отдаёт тепло.
На участке `3 – 1` теплообмена нет, т. е. $$ {Q}_{31}=0$$ и по 1-му закону термодинамики $$ 0=({U}_{1}-{U}_{3})+{A}_{31}$$. Тогда работа газа
$$ {A}_{31}={U}_{3}-{U}_{1}=\nu {c}_{V}\left({T}_{3}-{T}_{1}\right)=-\nu {c}_{V}∆T$$.
Итак, за цикл газ совершил работу $$ {A}_{12}+{A}_{31}={A}_{12}-\nu {c}_{V}∆T$$ и получил тепло только на участке `1 – 2`. КПД цикла
$$ \eta ={\displaystyle \frac{{A}_{12}+{A}_{31}}{{Q}_{12}}}={\displaystyle \frac{{A}_{12}-\nu {c}_{V}∆T}{{A}_{12}}}$$.
Так как $$ {c}_{V}={\displaystyle \frac{3}{2}}R$$, то работа газа на изотерме
$$ {A}_{12}={\displaystyle \frac{3\nu R∆T}{2(1-\eta )}}$$.