
- Обучение
- Поступление в ЗФТШ
- О ЗФТШ
- Учителям
- Лекторий
-
Курсы
- Заочное отделение
- Очное отделение
- Факультативы
Многочисленные опытные факты подтверждают, что большой круг явлений природы можно описать, введя понятия электрического заряда и электрического поля. Единицу электрического заряда можно ввести разными путями в зависимости от выбора системы единиц. Сейчас нет возможности на этом останавливаться, поэтому будем считать, что уже есть принципиальный способ измерять заряд количественно. Пойдём дальше.
При всех взаимодействиях в макромире и микромире выполняется закон сохранения электрического заряда:
алгебраическая сумма зарядов системы сохраняется, если через границы системы не проходят электрические заряды.
Следует ещё раз отметить, что закон сохранения заряда справедлив не только при взаимодействии макроскопических тел, но и при взаимодействии элементарных частиц, когда в результате ядерных реакций одни частицы исчезают, а другие появляются.
Важным понятием является точечный заряд, то есть заряженное тело, размерами которого можно пренебречь по сравнению с другими характерными расстояниями, например – расстоянием до других зарядов (заряженных тел).
Опыт показывает, что характеристикой электрического поля в каждой его точке является векторная величина $$ \overrightarrow{E}$$, называемая напряжённостью электрического поля и определяемая из равенства:
$$ \overrightarrow{E}={\displaystyle \frac{\overrightarrow{F}}{q}}$$.
Здесь $$ \overrightarrow{F}$$- сила, действующая на неподвижный точечный заряд, помещённый в исследуемую точку поля. При этом знак заряда `q` любой, а сам заряд называется пробным, т. к. им «пробуют» поле. Напряжённость поля от величины пробного заряда не зависит, как не зависит температура воды в озере от вида термометра, которым её измеряют. Следует, однако, заметить, что для измерения напряжённости поля, которое было до (а не после) внесения пробного заряда, следует брать заряд `q` настолько малым, чтобы он не вызывал заметного перераспределения зарядов, создающих поле, и не вызывал существенных изменений в других возможных источниках электрического поля. Источниками электрического поля являются электрические заряд и изменяющееся магнитное поле. И ещё одно замечание по записанному выше равенству для $$ \overrightarrow{E}$$$$ .$$ Точечный заряд `q` создаёт вокруг себя собственное электрическое поле, но это поле никак не входит в равенство для определения напряжённости $$ \overrightarrow{E}$$, поскольку $$ \overrightarrow{E}$$ есть напряжённость внешнего поля, т. е. поля, созданного всеми зарядами (или другими источниками), кроме заряда `q`. Заряд `q` служит лишь инструментом для измерения напряжённости этого внешнего поля. И это принципиально.
Частным случаем электрического поля является электростатическое поле, т. е. поле, созданное неподвижными зарядами.
Из опыта известно, что для электрического поля справедлив принцип суперпозиции:
в каждой точке напряжённость $$ \overrightarrow{E}$$ электрического поля равна векторной сумме напряжённостей полей, созданных в этой точке всеми источниками электрических полей:
$$ \overrightarrow{E}=\overrightarrow{{E}_{1}}+\overrightarrow{{E}_{2}}+...=\sum _{i}\overrightarrow{{E}_{i}} .$$