Пример 15. Построим множество точек , удовлетворяющих уравнению .
Преобразуем уравнение: . Таким образом, заданное уравнение равносильно совокупности двух уравнений или . Поэтому искомым множеством точек будет объединение этих двух прямых.
Построим множество точек таких, что
.
Преобразуем уравнение с помощью выделения полного квадрата: . Поскольку точные квадраты неотрицательны, то такому уравнению может удовлетворять лишь одна точка .
Аналогично рассматривается следующий пример, в котором также существенно выделение полного квадрата.
Построим множество точек таких, что . Преобразуем уравнение: . Так как модуль равен неотрицательному числу, то
т. е. уравнению снова будет удовлетворять единственная точка (см. рис. 39).
Множеством точек может быть область на плоскости. Рассмотрим пример.
Построим множество точек таких, что
.
Равенство будет верно для всяких и , удовлетворяющих ОДЗ. Поэтому искомым множество точек будет ОДЗ, т. е. часть плоскости, ограниченная двумя прямыми и (рис. 40).
Покажем ещё пример построения множеств точек, удовлетворяющим уравнениям с модулями.
Построим множество точек, удовлетворяющих .
По определению модуля получаем: . Поэтому множество точек – объединение двух прямых линий (рис. 41).